On Minimally Highly Vertex-Redundantly Rigid Graphs

被引:0
|
作者
Viktória E. Kaszanitzky
Csaba Király
机构
[1] Eötvös Loránd University,Department of Operations Research
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Vertex-redundant rigidity; Bar-joint frameworks;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is called k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document} if |V|≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|\ge k+1$$\end{document} and after deleting any set of at most k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} vertices the resulting graph is rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document}. A k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid if the omission of an arbitrary edge results in a graph that is not k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid. B. Servatius showed that a 2-rigid graph in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} has at least 2|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2|V|-1$$\end{document} edges and this bound is sharp. We extend this lower bound for arbitrary values of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} and show its sharpness for the cases where k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is arbitrary and where k=d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=d=3$$\end{document}. We also provide a sharp upper bound for the number of edges of minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graphs in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} for all k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}.
引用
收藏
页码:225 / 240
页数:15
相关论文
共 50 条
  • [41] GLOBALLY RIGID AUGMENTATION OF RIGID GRAPHS
    Kiraly, Csaba
    Mihalyko, Andras
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) : 2473 - 2496
  • [42] Incident Vertex π-Coloring of Graphs
    Thakare, Sunil B.
    Bhapkar, Haribhau R.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02): : 591 - 604
  • [43] Distant vertex partitions of graphs
    Jagger, C
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (04): : 413 - 422
  • [44] Tilings in vertex ordered graphs
    Balogh, Jozsef
    Li, Lina
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 171 - 201
  • [45] On the vertex connectivity of Deza graphs
    Gavrilyuk, A. L.
    Goryainov, S. V.
    Kabanov, V. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 94 - 103
  • [46] FINDING THE VERTEX CONNECTIVITY OF GRAPHS
    GALIL, Z
    SIAM JOURNAL ON COMPUTING, 1980, 9 (01) : 197 - 199
  • [47] Cores of Vertex Transitive Graphs
    Roberson, David E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [48] Fractional vertex arboricity of graphs
    Yu, Qinglin
    Zuo, Liancui
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 245 - +
  • [49] Vertex and tree arboricities of graphs
    Chang, GJ
    Chen, CY
    Chen, YP
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) : 295 - 306
  • [50] Asymptotic Vertex Growth for Graphs
    Pollicott, Mark
    SPECTRUM AND DYNAMICS, 2010, 52 : 137 - 145