On the multihomogeneous Bézout bound on the number of embeddings of minimally rigid graphs

被引:0
|
作者
Evangelos Bartzos
Ioannis Z. Emiris
Josef Schicho
机构
[1] Athena Research Center,Department of Informatics & Telecommunications
[2] National & Kapodistrian University of Athens,Research Institute for Symbolic Computation
[3] Johannes Kepler University,undefined
关键词
Rigid graph; Laman graph; Multihomogeneous Bézout bound; Combinatorial algorithm; Permanent; Bernstein’s second theorem; Mixed volume; 52C25; 14N10; 52A39;
D O I
暂无
中图分类号
学科分类号
摘要
Rigid graph theory is an active area with many open problems, especially regarding embeddings in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^d$$\end{document} or other manifolds, and tight upper bounds on their number for a given number of vertices. Our premise is to relate the number of embeddings to that of solutions of a well-constrained algebraic system and exploit progress in the latter domain. In particular, the system’s complex solutions naturally extend the notion of real embeddings, thus allowing us to employ bounds on complex roots. We focus on multihomogeneous Bézout (m-Bézout) bounds of algebraic systems since they are fast to compute and rather tight for systems exhibiting structure as in our case. We introduce two methods to relate such bounds to combinatorial properties of minimally rigid graphs in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document} and Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}. The first relates the number of graph orientations to the m-Bézout bound, while the second leverages a matrix permanent formulation. Using these approaches we improve the best known asymptotic upper bounds for planar graphs in dimension 3, and all minimally rigid graphs in dimension d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}, both in the Euclidean and spherical case. Our computations indicate that m-Bézout bounds are tight for embeddings of planar graphs in S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^2$$\end{document} and C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^3$$\end{document}. We exploit Bernstein’s second theorem on the exactness of mixed volume, and relate it to the m-Bézout bound by analyzing the associated Newton polytopes. We reduce the number of checks required to verify exactness by an exponential factor, and conjecture further that it suffices to check a linear instead of an exponential number of cases overall.
引用
收藏
页码:325 / 357
页数:32
相关论文
共 50 条
  • [1] On the multihomogeneous Bezout bound on the number of embeddings of minimally rigid graphs
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Schicho, Josef
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2020, 31 (5-6) : 325 - 357
  • [2] The Number of Embeddings of Minimally Rigid Graphs
    Ciprian Borcea
    Ileana Streinu
    Discrete & Computational Geometry, 2004, 31 : 287 - 303
  • [3] The number of embeddings of minimally rigid graphs
    Borcea, C
    Streinu, I
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 287 - 303
  • [4] New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Vidunas, Raimundas
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 796 - 816
  • [5] New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs
    Evangelos Bartzos
    Ioannis Z. Emiris
    Raimundas Vidunas
    Discrete & Computational Geometry, 2022, 68 : 796 - 816
  • [6] On the Maximal Number of Real Embeddings of Spatial Minimally Rigid Graphs
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Legersky, Jan
    Tsigaridas, Elias
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 55 - 62
  • [7] A lower bound for the number of orientable triangular embeddings of some complete graphs
    Grannell, M. J.
    Knor, M.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (02) : 216 - 225
  • [8] On the maximal number of real embeddings of minimally rigid graphs in R2, R3 and S2
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Legersky, Jan
    Tsigaridas, Elias
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 102 : 189 - 208
  • [9] A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs
    Grannell, M. J.
    Griggs, T. S.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) : 637 - 650
  • [10] MINIMALLY KNOTTED EMBEDDINGS OF PLANAR GRAPHS
    WU, YQ
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (04) : 653 - 658