On Minimally Highly Vertex-Redundantly Rigid Graphs

被引:0
|
作者
Viktória E. Kaszanitzky
Csaba Király
机构
[1] Eötvös Loránd University,Department of Operations Research
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Vertex-redundant rigidity; Bar-joint frameworks;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is called k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document} if |V|≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|\ge k+1$$\end{document} and after deleting any set of at most k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} vertices the resulting graph is rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document}. A k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid if the omission of an arbitrary edge results in a graph that is not k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid. B. Servatius showed that a 2-rigid graph in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} has at least 2|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2|V|-1$$\end{document} edges and this bound is sharp. We extend this lower bound for arbitrary values of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} and show its sharpness for the cases where k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is arbitrary and where k=d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=d=3$$\end{document}. We also provide a sharp upper bound for the number of edges of minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graphs in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} for all k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}.
引用
收藏
页码:225 / 240
页数:15
相关论文
共 50 条
  • [1] On Minimally Highly Vertex-Redundantly Rigid Graphs
    Kaszanitzky, Viktoria E.
    Kiraly, Csaba
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 225 - 240
  • [2] Minimum Size Highly Redundantly Rigid Graphs in the Plane
    Tibor Jordán
    Graphs and Combinatorics, 2021, 37 : 1415 - 1431
  • [3] Minimum Size Highly Redundantly Rigid Graphs in the Plane
    Jordan, Tibor
    GRAPHS AND COMBINATORICS, 2021, 37 (04) : 1415 - 1431
  • [4] Extremal families of redundantly rigid graphs in three dimensions
    Jordan, Tibor
    Poston, Christopher
    Roach, Ryan
    DISCRETE APPLIED MATHEMATICS, 2022, 322 : 448 - 464
  • [5] Minimally globally rigid graphs
    Garamvolgyi, Daniel
    Jordan, Tibor
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 108
  • [6] Minimally rigid periodic graphs
    Borcea, Ciprian S.
    Streinu, Ileana
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1093 - 1103
  • [7] The Number of Embeddings of Minimally Rigid Graphs
    Ciprian Borcea
    Ileana Streinu
    Discrete & Computational Geometry, 2004, 31 : 287 - 303
  • [8] The number of embeddings of minimally rigid graphs
    Borcea, C
    Streinu, I
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 287 - 303
  • [9] Minimally circular-imperfect graphs with a major vertex
    Xu, BG
    DISCRETE MATHEMATICS, 2005, 301 (2-3) : 239 - 242
  • [10] NODAL PARITY INVARIANTS OF KNOTTED RIGID VERTEX GRAPHS
    Kauffman, Louis H.
    Mishra, Rama
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (04)