A rigid graph G is said to be k-vertex (resp. k-edge) rigid in Rd if it remains rigid after the removal of less than k vertices (resp. edges). The definition of k-vertex (resp. k-edge) globally rigid graphs in Rd is similar. We study each of these four versions of redundant (global) rigidity and determine the smallest number of edges in a k-vertex (resp. k-edge) rigid (resp. globally rigid) graph on n vertices in R3 for all positive integers k, except for four special cases, where we provide a close-to-tight bound.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机构:
Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
机构:
Penn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USAPenn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
Case, Jeffrey S.
Hsiao, Chin-Yu
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Math, 6F Astron Math Bldg,1,Sec 4,Roosevelt Rd, Taipei 10617, TaiwanPenn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
Hsiao, Chin-Yu
Yang, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPenn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
机构:
Penn State Univ, Dept Math, McAllister Bldg, State Coll, PA 16802 USAPenn State Univ, Dept Math, McAllister Bldg, State Coll, PA 16802 USA
Case, Jeffrey S.
Hsiao, Chin-Yu
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Math, 6F,Astron Math Bldg,1,Sec 4,Roosevelt Rd, Taipei 10617, TaiwanPenn State Univ, Dept Math, McAllister Bldg, State Coll, PA 16802 USA
Hsiao, Chin-Yu
Yang, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Math, Princeton, NJ 08540 USAPenn State Univ, Dept Math, McAllister Bldg, State Coll, PA 16802 USA