Extremal families of redundantly rigid graphs in three dimensions

被引:1
|
作者
Jordan, Tibor [1 ,2 ]
Poston, Christopher [3 ]
Roach, Ryan [4 ]
机构
[1] Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
[2] MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
[3] Yale Univ, Dept Math, New Haven, CT USA
[4] Washington Univ, Dept Math & Stat, St Louis, MO USA
基金
匈牙利科学研究基金会;
关键词
Rigid graph; Globally rigid graph; Redundant rigidity; Block and hole graph; Rigid framework;
D O I
10.1016/j.dam.2022.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A rigid graph G is said to be k-vertex (resp. k-edge) rigid in Rd if it remains rigid after the removal of less than k vertices (resp. edges). The definition of k-vertex (resp. k-edge) globally rigid graphs in Rd is similar. We study each of these four versions of redundant (global) rigidity and determine the smallest number of edges in a k-vertex (resp. k-edge) rigid (resp. globally rigid) graph on n vertices in R3 for all positive integers k, except for four special cases, where we provide a close-to-tight bound.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:448 / 464
页数:17
相关论文
共 50 条
  • [1] Highly connected molecular graphs are rigid in three dimensions
    Jordan, Tibor
    INFORMATION PROCESSING LETTERS, 2012, 112 (8-9) : 356 - 359
  • [2] Minimum Size Highly Redundantly Rigid Graphs in the Plane
    Tibor Jordán
    Graphs and Combinatorics, 2021, 37 : 1415 - 1431
  • [3] On Minimally Highly Vertex-Redundantly Rigid Graphs
    Viktória E. Kaszanitzky
    Csaba Király
    Graphs and Combinatorics, 2016, 32 : 225 - 240
  • [4] On Minimally Highly Vertex-Redundantly Rigid Graphs
    Kaszanitzky, Viktoria E.
    Kiraly, Csaba
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 225 - 240
  • [5] Minimum Size Highly Redundantly Rigid Graphs in the Plane
    Jordan, Tibor
    GRAPHS AND COMBINATORICS, 2021, 37 (04) : 1415 - 1431
  • [6] Meyniel Extremal Families of Abelian Cayley Graphs
    Hasiri, Fatemeh
    Shinkar, Igor
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [7] Meyniel Extremal Families of Abelian Cayley Graphs
    Fatemeh Hasiri
    Igor Shinkar
    Graphs and Combinatorics, 2022, 38
  • [8] Some extremal families of edge-regular graphs
    Roblee, KJ
    Smotzer, TD
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 927 - 933
  • [9] Extremal metrics for the Q′-curvature in three dimensions
    Case, Jeffrey S.
    Hsiao, Chin-Yu
    Yang, Paul
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (04) : 407 - 410
  • [10] Extremal metrics for the Q′-curvature in three dimensions
    Case, Jeffrey S.
    Hsiao, Chin-Yu
    Yang, Paul
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (02) : 585 - 626