Nuclear operators on Banach function spaces

被引:0
|
作者
Marian Nowak
机构
[1] University of Zielona Góra,Institute of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Banach function spaces; Mackey topologies; Mixed topologies; Vector measures; Nuclear operators; Bochner representable operators; Kernel operators; Radon–Nikodym property; Orlicz spaces; Orlicz-Bochner spaces; 47B38; 47B10; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and E be a perfect Banach function space over a finite measure space (Ω,Σ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,\Sigma ,\lambda )$$\end{document} such that L∞⊂E⊂L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty \subset E\subset L^1$$\end{document}. Let E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} denote the Köthe dual of E and τ(E,E′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (E,E')$$\end{document} stand for the natural Mackey topology on E. It is shown that every nuclear operator T:E→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:E\rightarrow X$$\end{document} between the locally convex space (E,τ(E,E′))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\tau (E,E'))$$\end{document} and a Banach space X is Bochner representable. In particular, we obtain that a linear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} between the locally convex space (L∞,τ(L∞,L1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L^\infty ,\tau (L^\infty ,L^1))$$\end{document} and a Banach space X is nuclear if and only if its representing measure mT:Σ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_T:\Sigma \rightarrow X$$\end{document} has the Radon-Nikodym property and |mT|(Ω)=‖T‖nuc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|m_T|(\Omega )=\Vert T\Vert _{nuc}$$\end{document} (= the nuclear norm of T). As an application, it is shown that some natural kernel operators on L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} are nuclear. Moreover, it is shown that every nuclear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} admits a factorization through some Orlicz space Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\varphi $$\end{document}, that is, T=S∘i∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=S\circ i_\infty $$\end{document}, where S:Lφ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:L^\varphi \rightarrow X$$\end{document} is a Bochner representable and compact operator and i∞:L∞→Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_\infty :L^\infty \rightarrow L^\varphi $$\end{document} is the inclusion map.
引用
收藏
页码:801 / 818
页数:17
相关论文
共 50 条
  • [31] SOME PROPERTIES ON AVERAGING OPERATORS IN BANACH FUNCTION SPACES
    KORVIN, AD
    ROBERTS, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A493 - A493
  • [32] Factorization Theorems for Multiplication Operators on Banach Function Spaces
    Sanchez Perez, E. A.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 117 - 135
  • [33] Property of reflexivity for multiplication operators on Banach function spaces
    Yousefi, Bahmann
    Zangeneh, Fatemeh
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (03):
  • [34] Multiplication Operators on Generalized Orlicz Spaces Associated to Banach Function Spaces
    Aris, Busra
    Oztop, Serap
    Tabatabaie, Seyyed Mohammad
    Uysal, Badik Huseyin
    Uster, Ruya
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (06) : 1489 - 1497
  • [35] Factorization through Lorentz spaces for operators acting in Banach function spaces
    Sanchez Perez, E. A.
    POSITIVITY, 2019, 23 (01) : 75 - 88
  • [36] Factorization through Lorentz spaces for operators acting in Banach function spaces
    E. A. Sánchez Pérez
    Positivity, 2019, 23 : 75 - 88
  • [37] APPROXIMATION NUMBERS OF NUCLEAR OPERATORS AND GEOMETRY OF BANACH-SPACES
    PIETSCH, A
    ARCHIV DER MATHEMATIK, 1991, 57 (02) : 155 - 168
  • [38] ON P-NUCLEAR OPERATORS IN BANACH-SPACES WITH BASES
    REINOV, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (09): : 905 - 907
  • [39] Some Remarks on Integral Operators in Banach Function Spaces and Representation Theorems in Banach-Sobolev Spaces
    Mamedov, E. M.
    Nasibova, N. P.
    Sezer, Y.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (02): : 189 - 204
  • [40] On Banach spaces with small spaces of operators
    Zsák, A
    TRENDS IN BANACH SPACES & OPERATOR THEORY, 2003, 321 : 347 - 369