Nuclear operators on Banach function spaces

被引:0
|
作者
Marian Nowak
机构
[1] University of Zielona Góra,Institute of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Banach function spaces; Mackey topologies; Mixed topologies; Vector measures; Nuclear operators; Bochner representable operators; Kernel operators; Radon–Nikodym property; Orlicz spaces; Orlicz-Bochner spaces; 47B38; 47B10; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and E be a perfect Banach function space over a finite measure space (Ω,Σ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,\Sigma ,\lambda )$$\end{document} such that L∞⊂E⊂L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty \subset E\subset L^1$$\end{document}. Let E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} denote the Köthe dual of E and τ(E,E′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (E,E')$$\end{document} stand for the natural Mackey topology on E. It is shown that every nuclear operator T:E→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:E\rightarrow X$$\end{document} between the locally convex space (E,τ(E,E′))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\tau (E,E'))$$\end{document} and a Banach space X is Bochner representable. In particular, we obtain that a linear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} between the locally convex space (L∞,τ(L∞,L1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L^\infty ,\tau (L^\infty ,L^1))$$\end{document} and a Banach space X is nuclear if and only if its representing measure mT:Σ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_T:\Sigma \rightarrow X$$\end{document} has the Radon-Nikodym property and |mT|(Ω)=‖T‖nuc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|m_T|(\Omega )=\Vert T\Vert _{nuc}$$\end{document} (= the nuclear norm of T). As an application, it is shown that some natural kernel operators on L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} are nuclear. Moreover, it is shown that every nuclear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} admits a factorization through some Orlicz space Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\varphi $$\end{document}, that is, T=S∘i∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=S\circ i_\infty $$\end{document}, where S:Lφ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:L^\varphi \rightarrow X$$\end{document} is a Bochner representable and compact operator and i∞:L∞→Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_\infty :L^\infty \rightarrow L^\varphi $$\end{document} is the inclusion map.
引用
收藏
页码:801 / 818
页数:17
相关论文
共 50 条
  • [41] Banach spaces with small spaces of operators
    Gowers, WT
    Maurey, B
    MATHEMATISCHE ANNALEN, 1997, 307 (04) : 543 - 568
  • [42] Banach spaces with small spaces of operators
    W. T. Gowers
    B. Maurey
    Mathematische Annalen, 1997, 307 : 543 - 568
  • [43] Toeplitz Operators on Abstract Hardy Spaces Built upon Banach Function Spaces
    Karlovich, Alexei Yu.
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [44] EXTENSION OF LIPSCHITZ-TYPE OPERATORS ON BANACH FUNCTION SPACES
    Cavalcante, Wasthenny, V
    Rueda, Pilar
    Sanchez-Perez, Enrique A.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (01) : 343 - 364
  • [45] Compact-friendly multiplication operators on Banach function spaces
    Sirotkin, GG
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (02) : 517 - 523
  • [46] Optimal extensions of compactness properties for operators on Banach function spaces
    Calabuig, J. M.
    Jimenez Fernandez, E.
    Juan, M. A.
    Sanchez Perez, E. A.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 203 : 57 - 66
  • [47] Product factorability of integral bilinear operators on Banach function spaces
    E. Erdoğan
    E. A. Sánchez Pérez
    Ö. Gök
    Positivity, 2019, 23 : 671 - 696
  • [48] ON SUBSTITUTION AND EXTENSION OPERATORS IN BANACH-SOBOLEV FUNCTION SPACES
    Mamedov, Eminaga M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (01): : 88 - 103
  • [49] Strong Factorizations between Couples of Operators on Banach Function Spaces
    Delgado, O.
    Sanchez Perez, E. A.
    JOURNAL OF CONVEX ANALYSIS, 2013, 20 (03) : 599 - 616
  • [50] COMPACT INTEGRAL-OPERATORS ON BANACH FUNCTION-SPACES
    DODDS, PG
    SCHEP, AR
    MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (02) : 249 - 255