Nuclear operators on Banach function spaces

被引:0
|
作者
Marian Nowak
机构
[1] University of Zielona Góra,Institute of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Banach function spaces; Mackey topologies; Mixed topologies; Vector measures; Nuclear operators; Bochner representable operators; Kernel operators; Radon–Nikodym property; Orlicz spaces; Orlicz-Bochner spaces; 47B38; 47B10; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and E be a perfect Banach function space over a finite measure space (Ω,Σ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega ,\Sigma ,\lambda )$$\end{document} such that L∞⊂E⊂L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty \subset E\subset L^1$$\end{document}. Let E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} denote the Köthe dual of E and τ(E,E′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (E,E')$$\end{document} stand for the natural Mackey topology on E. It is shown that every nuclear operator T:E→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:E\rightarrow X$$\end{document} between the locally convex space (E,τ(E,E′))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\tau (E,E'))$$\end{document} and a Banach space X is Bochner representable. In particular, we obtain that a linear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} between the locally convex space (L∞,τ(L∞,L1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L^\infty ,\tau (L^\infty ,L^1))$$\end{document} and a Banach space X is nuclear if and only if its representing measure mT:Σ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_T:\Sigma \rightarrow X$$\end{document} has the Radon-Nikodym property and |mT|(Ω)=‖T‖nuc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|m_T|(\Omega )=\Vert T\Vert _{nuc}$$\end{document} (= the nuclear norm of T). As an application, it is shown that some natural kernel operators on L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} are nuclear. Moreover, it is shown that every nuclear operator T:L∞→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L^\infty \rightarrow X$$\end{document} admits a factorization through some Orlicz space Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\varphi $$\end{document}, that is, T=S∘i∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=S\circ i_\infty $$\end{document}, where S:Lφ→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:L^\varphi \rightarrow X$$\end{document} is a Bochner representable and compact operator and i∞:L∞→Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_\infty :L^\infty \rightarrow L^\varphi $$\end{document} is the inclusion map.
引用
收藏
页码:801 / 818
页数:17
相关论文
共 50 条
  • [21] Property of reflexivity for multiplication operators on Banach function spaces
    Bahmann Yousefi
    Fatemeh Zangeneh
    Proceedings - Mathematical Sciences, 2018, 128
  • [22] HOLOMORPHIC SUPERPOSITION OPERATORS BETWEEN BANACH FUNCTION SPACES
    Boyd, Christopher
    Rueda, Pilar
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) : 186 - 197
  • [23] COMPACTNESS CONDITIONS FOR INTEGRAL OPERATORS IN BANACH FUNCTION SPACES
    GROBLER, JJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1970, 73 (04): : 287 - &
  • [24] NONCOMPACTNESS OF FOURIER CONVOLUTION OPERATORS ON BANACH FUNCTION SPACES
    Fernandes, Claudio A.
    Karlovich, Alexei Y.
    Karlovich, Yuri, I
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04): : 553 - 561
  • [25] Regularity of Continuous Linear Operators on Banach Function Spaces
    JIANG Nian-sheng
    2.Department of Applied Mathematics
    数学季刊, 2004, (01) : 51 - 56
  • [26] Lattice Lipschitz superposition operators on Banach function spaces
    Arnau, Roger
    Calabuig, Jose M.
    Erdogan, Ezgi
    Perez, Enrique A. Sanchez
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [27] Factorization Theorems for Multiplication Operators on Banach Function Spaces
    E. A. Sánchez Pérez
    Integral Equations and Operator Theory, 2014, 80 : 117 - 135
  • [28] Summability Properties for Multiplication Operators on Banach Function Spaces
    Delgado, O.
    Sanchez Perez, E. A.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (02) : 197 - 214
  • [29] Summability Properties for Multiplication Operators on Banach Function Spaces
    O. Delgado
    E. A. Sánchez Pérez
    Integral Equations and Operator Theory, 2010, 66 : 197 - 214
  • [30] CHAOTIC AND HYPERCYCLIC OPERATORS ON SOLID BANACH FUNCTION SPACES
    Chen, C-C
    Tabatabaie, S. M.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 83 - 98