Multiplication Operators on Generalized Orlicz Spaces Associated to Banach Function Spaces

被引:0
|
作者
Aris, Busra [1 ]
Oztop, Serap [1 ]
Tabatabaie, Seyyed Mohammad [2 ]
Uysal, Badik Huseyin [1 ]
Uster, Ruya [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, Istanbul, Turkiye
[2] Univ Qom, Dept Math, Qom, Iran
关键词
Young function; Orlicz space; Banach function space; Solidity; Multiplication operator; Compact operator; Essential norm;
D O I
10.1007/s40995-024-01723-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study multiplication operators on generalized Orlicz spaces X Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X<^>\Phi$$\end{document} associated to a Banach function space X, where Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} is a Young function, and give some characterization of them to be well-defined and bounded. Also, we present some sufficient and necessary conditions for such operators to be compact or invertible. Moreover, we find the essential norm of a multiplication operator on X Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X<^>\Phi$$\end{document} while the context measure space is discrete. Many results of this paper cover known Banach function spaces related to Orlicz one.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Factorizing operators on Banach function spaces through spaces of multiplication operators
    Calabuig, J. M.
    Delgado, O.
    Sanchez Perez, E. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (01) : 88 - 103
  • [2] Algebras of multiplication operators in Banach function spaces
    de Pagter, B
    Ricker, WJ
    [J]. JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 245 - 267
  • [3] Matrix multiplication operators on Banach function spaces
    H. Hudzik
    Rajeev Kumar
    Romesh Kumar
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 71 - 81
  • [4] Matrix multiplication operators on Banach function spaces
    Hudzik, H
    Kumar, R
    Kumar, R
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (01): : 71 - 81
  • [5] Composition and multiplication operators between Orlicz function spaces
    Chawziuk, Tadeusz
    Cui, Yunan
    Estaremi, Yousef
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 18
  • [6] Composition and multiplication operators between Orlicz function spaces
    Tadeusz Chawziuk
    Yunan Cui
    Yousef Estaremi
    Henryk Hudzik
    Radosław Kaczmarek
    [J]. Journal of Inequalities and Applications, 2016
  • [7] Multiplication operators between Orlicz spaces
    Komal, BS
    Gupta, S
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (03) : 324 - 330
  • [8] Hardy–Orlicz Spaces and Their Multiplication Operators
    Qun Lu
    Guang Fu Cao
    Li Fang Liu
    [J]. Acta Mathematica Sinica, 2005, 21 : 593 - 598
  • [9] Multiplication operators between Orlicz spaces
    B. S. Komal
    Shally Gupta
    [J]. Integral Equations and Operator Theory, 2001, 41 : 324 - 330
  • [10] Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators
    Jiang, Renjin
    Yang, Dachun
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) : 1 - 35