Turán Numbers of Complete 3-Uniform Berge-Hypergraphs

被引:0
|
作者
L. Maherani
M. Shahsiah
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Turán number; Extremal hypergraph; Berge-hypergraph; 05C65; 05C35; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} of r-graphs, the Turán number of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} for a given positive integer N, denoted by ex(N,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}})$$\end{document}, is the maximum number of edges of an r-graph on N vertices that does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} as a subgraph. For given r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document}, a complete r-uniform Berge-hypergraph, denoted by Kn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}_n^{(r)}$$\end{document}, is an r-uniform hypergraph of order n with the core sequence v1,v2,…,vn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{1}, v_{2}, \ldots ,v_{n}$$\end{document} as the vertices and distinct edges eij,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij},$$\end{document}1≤i<j≤n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i<j\le n,$$\end{document} where every eij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij}$$\end{document} contains both vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{i}$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{j}$$\end{document}. Let Fn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(r)}_n$$\end{document} be the family of complete r-uniform Berge-hypergraphs of order n. We determine precisely ex(N,Fn(3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}}^{(3)}_{n})$$\end{document} for N≥n≥13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge n \ge 13$$\end{document}. We also find the extremal hypergraphs avoiding Fn(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(3)}_{n}$$\end{document}.
引用
收藏
页码:619 / 632
页数:13
相关论文
共 50 条
  • [1] Turan Numbers of Complete 3-Uniform Berge-Hypergraphs
    Maherani, L.
    Shahsiah, M.
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (04) : 619 - 632
  • [2] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [3] RAMSEY NUMBERS OF BERGE-HYPERGRAPHS AND RELATED STRUCTURES
    Salia, N.
    Tompkins, C.
    Wang, Z.
    Zamora, O.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1035 - 1042
  • [4] Ramsey numbers of Berge-hypergraphs and related structures
    Salia, Nika
    Tompkins, Casey
    Wang, Zhiyu
    Zamora, Oscar
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):
  • [5] Turan numbers for Berge-hypergraphs and related extremal problems
    Palmer, Cory
    Tait, Michael
    Timmons, Craig
    Wagner, Adam Zsolt
    [J]. DISCRETE MATHEMATICS, 2019, 342 (06) : 1553 - 1563
  • [6] On Ramsey numbers of 3-uniform Berge cycles
    Maherani, Leila
    Shahsiah, Maryam
    [J]. DISCRETE MATHEMATICS, 2024, 347 (04)
  • [7] The genus of complete 3-uniform hypergraphs
    Jing, Yifan
    Mohar, Bojan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 141 : 223 - 239
  • [8] On Generalized Ramsey Numbers for 3-Uniform Hypergraphs
    Dudek, Andrzej
    Mubayi, Dhruv
    [J]. JOURNAL OF GRAPH THEORY, 2014, 76 (03) : 217 - 223
  • [9] THE TURAN NUMBER OF BERGE-K4 IN 3-UNIFORM HYPERGRAPHS
    Zhu, Hui
    Kang, Liying
    Ni, Zhenyu
    Shan, Erfang
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1485 - 1492
  • [10] HAMILTON DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS
    VERRALL, H
    [J]. DISCRETE MATHEMATICS, 1994, 132 (1-3) : 333 - 348