Turán Numbers of Complete 3-Uniform Berge-Hypergraphs

被引:0
|
作者
L. Maherani
M. Shahsiah
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Turán number; Extremal hypergraph; Berge-hypergraph; 05C65; 05C35; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} of r-graphs, the Turán number of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} for a given positive integer N, denoted by ex(N,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}})$$\end{document}, is the maximum number of edges of an r-graph on N vertices that does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} as a subgraph. For given r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document}, a complete r-uniform Berge-hypergraph, denoted by Kn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}_n^{(r)}$$\end{document}, is an r-uniform hypergraph of order n with the core sequence v1,v2,…,vn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{1}, v_{2}, \ldots ,v_{n}$$\end{document} as the vertices and distinct edges eij,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij},$$\end{document}1≤i<j≤n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i<j\le n,$$\end{document} where every eij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij}$$\end{document} contains both vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{i}$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{j}$$\end{document}. Let Fn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(r)}_n$$\end{document} be the family of complete r-uniform Berge-hypergraphs of order n. We determine precisely ex(N,Fn(3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}}^{(3)}_{n})$$\end{document} for N≥n≥13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge n \ge 13$$\end{document}. We also find the extremal hypergraphs avoiding Fn(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(3)}_{n}$$\end{document}.
引用
收藏
页码:619 / 632
页数:13
相关论文
共 50 条
  • [21] On Graph-Lagrangians and clique numbers of 3-uniform hypergraphs
    Sun, Yan Ping
    Peng, Yue Jian
    Wu, Biao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 943 - 960
  • [22] Asymptotics for Turan numbers of cycles in 3-uniform linear hypergraphs
    Ergemlidze, Beka
    Gyori, Ervin
    Methuku, Abhishek
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 163 : 163 - 181
  • [23] On Graph-Lagrangians and clique numbers of 3-uniform hypergraphs
    Yan Ping Sun
    Yue Jian Peng
    Biao Wu
    Acta Mathematica Sinica, English Series, 2016, 32 : 943 - 960
  • [24] On Graph-Lagrangians and Clique Numbers of 3-Uniform Hypergraphs
    Yan Ping SUN
    Yue Jian PENG
    Biao WU
    Acta Mathematica Sinica,English Series, 2016, (08) : 943 - 960
  • [25] Combinatorial Nullstellensatz and Turán numbers of complete r-partite r-uniform hypergraphs
    Gordeev, Alexey
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [26] 6-Cycle decompositions of complete 3-uniform hypergraphs
    Lakshmi, R.
    Poovaragavan, T.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 79 - 88
  • [27] 4-Cycle decompositions of complete 3-uniform hypergraphs
    Jordon, Heather
    Newkirk, Genevieve
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 312 - 323
  • [28] Prime 3-Uniform Hypergraphs
    Boussairi, Abderrahim
    Chergui, Brahim
    Ille, Pierre
    Zaidi, Mohamed
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2737 - 2760
  • [29] Prime 3-Uniform Hypergraphs
    Abderrahim Boussaïri
    Brahim Chergui
    Pierre Ille
    Mohamed Zaidi
    Graphs and Combinatorics, 2021, 37 : 2737 - 2760
  • [30] Matchings in 3-uniform hypergraphs
    Kuehn, Daniela
    Osthus, Deryk
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (02) : 291 - 305