Turán Numbers of Complete 3-Uniform Berge-Hypergraphs

被引:0
|
作者
L. Maherani
M. Shahsiah
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Turán number; Extremal hypergraph; Berge-hypergraph; 05C65; 05C35; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} of r-graphs, the Turán number of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} for a given positive integer N, denoted by ex(N,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}})$$\end{document}, is the maximum number of edges of an r-graph on N vertices that does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} as a subgraph. For given r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document}, a complete r-uniform Berge-hypergraph, denoted by Kn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}_n^{(r)}$$\end{document}, is an r-uniform hypergraph of order n with the core sequence v1,v2,…,vn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{1}, v_{2}, \ldots ,v_{n}$$\end{document} as the vertices and distinct edges eij,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij},$$\end{document}1≤i<j≤n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i<j\le n,$$\end{document} where every eij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij}$$\end{document} contains both vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{i}$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{j}$$\end{document}. Let Fn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(r)}_n$$\end{document} be the family of complete r-uniform Berge-hypergraphs of order n. We determine precisely ex(N,Fn(3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}}^{(3)}_{n})$$\end{document} for N≥n≥13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge n \ge 13$$\end{document}. We also find the extremal hypergraphs avoiding Fn(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(3)}_{n}$$\end{document}.
引用
下载
收藏
页码:619 / 632
页数:13
相关论文
共 50 条
  • [31] Large monochromatic components in colorings of complete 3-uniform hypergraphs
    Gyarfas, Andras
    Haxell, Penny
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3156 - 3160
  • [32] Hamiltonian decompositions of prisms over complete 3-uniform hypergraphs
    Boonklurb, Ratinan
    Singhun, Sirirat
    Termtanasombat, Sansanee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (03)
  • [33] Partitioning 3-uniform hypergraphs
    Ma, Jie
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (01) : 212 - 232
  • [34] Wickets in 3-uniform hypergraphs
    Solymosi, Jozsef
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [35] Matching in 3-uniform hypergraphs
    Zhang, Yi
    Lu, Mei
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1731 - 1737
  • [36] On Turán numbers for disconnected hypergraphs
    R. Mulas
    J. Nie
    Acta Mathematica Hungarica, 2023, 170 : 168 - 182
  • [37] On the Turán Density of Uniform Hypergraphs
    An CHANG
    Guo-rong GAO
    Acta Mathematicae Applicatae Sinica, 2023, 39 (03) : 638 - 646
  • [38] On the Turán Density of Uniform Hypergraphs
    An Chang
    Guo-rong Gao
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 638 - 646
  • [39] Decompositions of complete uniform hypergraphs into Hamilton Berge cycles
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 128 - 135
  • [40] 3-Uniform hypergraphs of bounded degree have linear Ramsey numbers
    Cooley, Oliver
    Fountoulakis, Nikolaos
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (03) : 484 - 505