Turán Numbers of Complete 3-Uniform Berge-Hypergraphs

被引:0
|
作者
L. Maherani
M. Shahsiah
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Turán number; Extremal hypergraph; Berge-hypergraph; 05C65; 05C35; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} of r-graphs, the Turán number of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} for a given positive integer N, denoted by ex(N,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}})$$\end{document}, is the maximum number of edges of an r-graph on N vertices that does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} as a subgraph. For given r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document}, a complete r-uniform Berge-hypergraph, denoted by Kn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}_n^{(r)}$$\end{document}, is an r-uniform hypergraph of order n with the core sequence v1,v2,…,vn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{1}, v_{2}, \ldots ,v_{n}$$\end{document} as the vertices and distinct edges eij,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij},$$\end{document}1≤i<j≤n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i<j\le n,$$\end{document} where every eij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{ij}$$\end{document} contains both vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{i}$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{j}$$\end{document}. Let Fn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(r)}_n$$\end{document} be the family of complete r-uniform Berge-hypergraphs of order n. We determine precisely ex(N,Fn(3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(N,{\mathcal {F}}^{(3)}_{n})$$\end{document} for N≥n≥13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge n \ge 13$$\end{document}. We also find the extremal hypergraphs avoiding Fn(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}^{(3)}_{n}$$\end{document}.
引用
收藏
页码:619 / 632
页数:13
相关论文
共 50 条
  • [41] On tight 6-cycle decompositions of complete 3-uniform hypergraphs
    Akin, Matthew
    Bunge, Ryan C.
    El-Zanati, Saad, I
    Hamilton, Joshua
    Kolle, Brittany
    Lehmann, Sabrina
    Neiburger, Levi
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [42] On tight 9-cycle decompositions of complete 3-uniform hypergraphs
    Bunge, Ryan C.
    Darrow, Brian D., Jr.
    El-Zanati, Saad, I
    Hadaway, Kimberly P.
    Pryor, Megan K.
    Romer, Alexander J.
    Squires, Alexandra
    Stover, Anna C.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 233 - 240
  • [43] DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS INTO CYCLES OF CONSTANT PRIME LENGTH
    Lakshmi, R.
    Poovaragavan, T.
    OPUSCULA MATHEMATICA, 2020, 40 (04) : 509 - 516
  • [44] On Decompositions of Complete 3-Uniform Hypergraphs into a Linear Forest with 4 Edges
    Bunge, Ryan C.
    Dawson, Erin
    Donovan, Mary
    Hatzer, Cody
    Maass, Jacquelyn
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 333 - 354
  • [45] Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
    Keszler, Anita
    Tuza, Zsolt
    MATHEMATICS, 2021, 9 (05) : 1 - 59
  • [46] Book free 3-uniform hypergraphs
    Ghosh, Debarun
    Gyori, Ervin
    Nagy-Gyorgy, Judit
    Paulos, Addisu
    Xiao, Chuanqi
    Zamora, Oscar
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [47] Spanning trees of 3-uniform hypergraphs
    Goodall, Andrew
    de Mier, Anna
    ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (04) : 840 - 868
  • [48] Cycle Decompositions in 3-Uniform Hypergraphs
    Simón Piga
    Nicolás Sanhueza-Matamala
    Combinatorica, 2023, 43 : 1 - 36
  • [49] Small cores in 3-uniform hypergraphs
    Solymosi, David
    Solymosi, Jozsef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 897 - 910
  • [50] Embedding Factorizations for 3-Uniform Hypergraphs
    Bahmanian, Amin
    Rodger, Chris
    JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 216 - 224