On Generalized Ramsey Numbers for 3-Uniform Hypergraphs

被引:8
|
作者
Dudek, Andrzej [1 ]
Mubayi, Dhruv [2 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词
hypergraphs; Ramsey numbers; FREE SUBGRAPHS; FREE GRAPHS;
D O I
10.1002/jgt.21760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known Ramsey number r(t,u) is the smallest integer n such that every K-t-free graph of order n contains an independent set of size u. In other words, it contains a subset of u vertices with no K-2. Erdos and Rogers introduced a more general problem replacing K-2 by Ks for 2 <= s <t. Extending the problem of determining Ramsey numbers they defined the numbers f(s,t)(n) = min{max{|W|:W subset of V(G) and G[W] contains no K-s}},where the minimum is taken over all K-t-free graphs G of order n. In this note, we study an analogous function f(s,t)((3))(n) for 3-uniform hypergraphs. In particular, we show that there are constants c(1) and c(2) depending only on s such that c1(log n)(1/4) (loglogn/logloglogn)(1/2) < f(s,s+1)((3))(n) < c(2) log n.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 50 条
  • [1] ON ORDERED RAMSEY NUMBERS OF TRIPARTITE 3-UNIFORM HYPERGRAPHS
    Balko, Martin
    Vizer, Mate
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 214 - 228
  • [2] 3-Uniform hypergraphs of bounded degree have linear Ramsey numbers
    Cooley, Oliver
    Fountoulakis, Nikolaos
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (03) : 484 - 505
  • [3] BIG RAMSEY DEGREES OF 3-UNIFORM HYPERGRAPHS
    Balko, M.
    Chodounsky, D.
    Hubicka, J.
    Konecny, M.
    Vena, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 415 - 422
  • [4] Big Ramsey Degrees of 3-Uniform Hypergraphs are Finite
    Balko, Martin
    Chodounsky, David
    Hubicka, Jan
    Konecny, Matej
    Vena, Lluis
    COMBINATORICA, 2022, 42 (05) : 659 - 672
  • [5] Big Ramsey Degrees of 3-Uniform Hypergraphs Are Finite
    Martin Balko
    David Chodounský
    Jan Hubička
    Matěj Konečný
    Lluis Vena
    Combinatorica, 2022, 42 : 659 - 672
  • [6] The Ramsey number of loose paths in 3-uniform hypergraphs
    Maherani, Leila
    Omidi, Golam Reza
    Raeisi, Ghaffar
    Shahsiah, Maryam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [7] On Ramsey numbers of 3-uniform Berge cycles
    Maherani, Leila
    Shahsiah, Maryam
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [8] ANTI-RAMSEY NUMBER OF MATCHINGS IN 3-UNIFORM HYPERGRAPHS
    Guo, Mingyang
    Lu, Hongliang
    Peng, Xing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1970 - 1987
  • [9] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [10] Minimum Degrees and Codegrees of Ramsey-Minimal 3-Uniform Hypergraphs
    Clemens, Dennis
    Person, Yury
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (06): : 850 - 869