Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles

被引:0
|
作者
Danjun Huang
Xiaoxiu Zhang
Weifan Wang
Ping Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] St. Francis Xavier University,Department of Mathematics, Statistics and Computer Science
关键词
Adjacent vertex distinguishing edge coloring; Planar graph; Cycle; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacent vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that the edge coloring set on any pair of adjacent vertices is distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of G is denoted by χa′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{a}'(G)$$\end{document}. It is observed that χa′(G)≥Δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\ge \Delta (G)+1$$\end{document} when G contains two adjacent vertices of degree Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that if G is a planar graph without 4-cycles, then χa′(G)≤max{9,Δ(G)+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\le \max \{9,\Delta (G)+1\}$$\end{document}.
引用
收藏
页码:3159 / 3181
页数:22
相关论文
共 50 条
  • [41] List-Coloring the Squares of Planar Graphs without 4-Cycles and 5-Cycles
    Cranston, Daniel W.
    Jaeger, Bobby
    [J]. JOURNAL OF GRAPH THEORY, 2017, 85 (04) : 721 - 737
  • [42] Structural properties and edge choosability of planar graphs without 4-cycles
    Shen, Yufa
    Zheng, Guoping
    He, Wenjie
    Zhao, Yongqiang
    [J]. DISCRETE MATHEMATICS, 2008, 308 (23) : 5789 - 5794
  • [43] Neighbor sum distinguishing total choosability of planar graphs without 4-cycles
    Wang, Jihui
    Cai, Jiansheng
    Ma, Qiaoling
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 206 : 215 - 219
  • [44] 2-DISTANCE COLORING OF PLANAR GRAPHS WITHOUT 4-CYCLES AND 5-CYCLES
    Dong, Wei
    Xu, Baogang
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1297 - 1312
  • [45] List vertex arboricity of planar graphs with 5-cycles not adjacent to 3-cycles and 4-cycles
    Xue, Ling
    [J]. ARS COMBINATORIA, 2017, 133 : 401 - 406
  • [46] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Shiu Wai Chee
    Chan Wai Hong
    Zhang Zhong-fu
    Bian Liang
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (04) : 439 - 452
  • [47] Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ
    Hocquard, Herve
    Montassier, Mickael
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 152 - 160
  • [48] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    SHIU Wai Chee
    [J]. AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2011, 26 (04) : 439 - 452
  • [49] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Wai Chee Shiu
    Wai Hong Chan
    Zhong-fu Zhang
    Liang Bian
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 439 - 452
  • [50] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    SHIU Wai Chee
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 439 - 452