The adjacent vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that the edge coloring set on any pair of adjacent vertices is distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of G is denoted by χa′(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _{a}'(G)$$\end{document}. It is observed that χa′(G)≥Δ(G)+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _a'(G)\ge \Delta (G)+1$$\end{document} when G contains two adjacent vertices of degree Δ(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that if G is a planar graph without 4-cycles, then χa′(G)≤max{9,Δ(G)+1}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _a'(G)\le \max \{9,\Delta (G)+1\}$$\end{document}.
机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, Med Coll Virginia Campus, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, Med Coll Virginia Campus, Richmond, VA 23284 USA
Cranston, Daniel W.
Jaeger, Bobby
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, Med Coll Virginia Campus, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, Med Coll Virginia Campus, Richmond, VA 23284 USA
机构:
Hebei Normal Univ Sci & Technol, Dept Math & Phys, Qinhuangdao 066004, Hebei Province, Peoples R China
Hebei Normal Univ, Ctr Math Hebei Prov, Shijiazhuang 050016, Peoples R ChinaHebei Normal Univ Sci & Technol, Dept Math & Phys, Qinhuangdao 066004, Hebei Province, Peoples R China
Shen, Yufa
Zheng, Guoping
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ Sci & Technol, Dept Math & Phys, Qinhuangdao 066004, Hebei Province, Peoples R ChinaHebei Normal Univ Sci & Technol, Dept Math & Phys, Qinhuangdao 066004, Hebei Province, Peoples R China
Zheng, Guoping
He, Wenjie
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Univ Technol, Inst Appl Math, Tianjin 300130, Peoples R ChinaHebei Normal Univ Sci & Technol, Dept Math & Phys, Qinhuangdao 066004, Hebei Province, Peoples R China
He, Wenjie
Zhao, Yongqiang
论文数: 0引用数: 0
h-index: 0
机构:
Shijiazhuang Coll, Dept Math, Shijiazhuang 050801, Peoples R ChinaHebei Normal Univ Sci & Technol, Dept Math & Phys, Qinhuangdao 066004, Hebei Province, Peoples R China
机构:
Nanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing, Jiangsu, Peoples R ChinaNanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing, Jiangsu, Peoples R China
Dong, Wei
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Jiangsu, Peoples R ChinaNanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing, Jiangsu, Peoples R China
机构:
Taishan Polytech, Dept Informat Engn, Tai An 271000, Shandong, Peoples R ChinaTaishan Polytech, Dept Informat Engn, Tai An 271000, Shandong, Peoples R China
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Shiu Wai Chee
Chan Wai Hong
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Chan Wai Hong
Zhang Zhong-fu
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Zhang Zhong-fu
Bian Liang
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China