Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles

被引:0
|
作者
Danjun Huang
Xiaoxiu Zhang
Weifan Wang
Ping Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] St. Francis Xavier University,Department of Mathematics, Statistics and Computer Science
关键词
Adjacent vertex distinguishing edge coloring; Planar graph; Cycle; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacent vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that the edge coloring set on any pair of adjacent vertices is distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of G is denoted by χa′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{a}'(G)$$\end{document}. It is observed that χa′(G)≥Δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\ge \Delta (G)+1$$\end{document} when G contains two adjacent vertices of degree Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that if G is a planar graph without 4-cycles, then χa′(G)≤max{9,Δ(G)+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\le \max \{9,\Delta (G)+1\}$$\end{document}.
引用
收藏
页码:3159 / 3181
页数:22
相关论文
共 50 条
  • [21] Total Coloring of Planar Graphs without Adacent 4-cycles
    Tan, Xiang
    Chen, Hong-Yu
    Wu, Jian-Liang
    [J]. OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 167 - 173
  • [22] Vertex 2-arboricity of planar graphs without 4-cycles adjacent to 6-cycles
    Nakprasit, Kittikorn
    Ruksasakchai, Watcharintorn
    Sittitrai, Pongpat
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 941 : 131 - 139
  • [23] Vertex 2-arboricity of planar graphs without 4-cycles adjacent to 6-cycles
    Nakprasit, Kittikorn
    Ruksasakchai, Watcharintorn
    Sittitrai, Pongpat
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 941 : 131 - 139
  • [24] The adjacent vertex distinguishing total coloring of planar graphs
    Weifan Wang
    Danjun Huang
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 379 - 396
  • [25] The adjacent vertex distinguishing total coloring of planar graphs
    Wang, Weifan
    Huang, Danjun
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 379 - 396
  • [26] The linear arboricity of planar graphs without adjacent 4-cycles
    Wang, Huijuan
    Liu, Bin
    Wu, Jianliang
    [J]. UTILITAS MATHEMATICA, 2013, 91 : 143 - 153
  • [27] Multiple DP-Coloring of Planar Graphs Without 3-Cycles and Normally Adjacent 4-Cycles
    Huan Zhou
    Xuding Zhu
    [J]. Graphs and Combinatorics, 2022, 38
  • [28] Multiple DP-Coloring of Planar Graphs Without 3-Cycles and Normally Adjacent 4-Cycles
    Zhou, Huan
    Zhu, Xuding
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [29] Planar Graphs Without 4-Cycles Adjacent to 3-Cycles Are List Vertex 2-Arborable
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (03) : 234 - 240
  • [30] Edge coloring of planar graphs without adjacent 7-cycles
    Zhang, Wenwen
    Wu, Jian-Liang
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 739 : 59 - 64