Adjacent Vertex Distinguishing Edge Coloring of Planar Graphs Without 4-Cycles

被引:0
|
作者
Danjun Huang
Xiaoxiu Zhang
Weifan Wang
Ping Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] St. Francis Xavier University,Department of Mathematics, Statistics and Computer Science
关键词
Adjacent vertex distinguishing edge coloring; Planar graph; Cycle; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacent vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that the edge coloring set on any pair of adjacent vertices is distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of G is denoted by χa′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{a}'(G)$$\end{document}. It is observed that χa′(G)≥Δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\ge \Delta (G)+1$$\end{document} when G contains two adjacent vertices of degree Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that if G is a planar graph without 4-cycles, then χa′(G)≤max{9,Δ(G)+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _a'(G)\le \max \{9,\Delta (G)+1\}$$\end{document}.
引用
收藏
页码:3159 / 3181
页数:22
相关论文
共 50 条
  • [31] Adjacent vertex distinguishing edge-coloring of planar graphs with girth at least five
    Xu, Xinping
    Zhang, Yiying
    [J]. ARS COMBINATORIA, 2014, 116 : 359 - 369
  • [32] Adjacent vertex distinguishing indices of planar graphs without 3-cycles
    Huang, Danjun
    Miao, Zhengke
    Wang, Weifan
    [J]. DISCRETE MATHEMATICS, 2015, 338 (03) : 139 - 148
  • [33] The algorithm for adjacent vertex distinguishing proper edge coloring of graphs
    Li, Jingwen
    Hu, Tengyun
    Wen, Fei
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [34] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Jing-wen LI
    Cong WANG
    Zhi-wen WANG
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 615 - 622
  • [35] Smarandachely Adjacent Vertex Distinguishing Edge Coloring of Some Graphs
    Liu, Shunqin
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [36] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Li, Jing-wen
    Wang, Cong
    Wang, Zhi-wen
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 615 - 622
  • [37] On the adjacent vertex-distinguishing equitable edge coloring of graphs
    Jing-wen Li
    Cong Wang
    Zhi-wen Wang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 615 - 622
  • [38] Equitable coloring of planar graphs without 5-cycles and chordal 4-cycles
    Wu, Xianxi
    Huang, Danjun
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [39] Planar graphs without 4-cycles adjacent to triangles are 4-choosable
    Cheng, Panpan
    Chen, Min
    Wang, Yingqian
    [J]. DISCRETE MATHEMATICS, 2016, 339 (12) : 3052 - 3057
  • [40] A note on list edge coloring of planar graphs without adjacent short cycles
    Hu, Linna
    Song, Huimin
    Wu, Jian-Liang
    [J]. ARS COMBINATORIA, 2019, 143 : 3 - 12