On the adjacent vertex-distinguishing acyclic edge coloring of some graphs

被引:0
|
作者
Wai Chee Shiu
Wai Hong Chan
Zhong-fu Zhang
Liang Bian
机构
[1] Hong Kong Baptist University,Department of Mathematics
[2] Lanzhou Jiaotong University,Institute of Applied Mathematics
关键词
Adjacent strong edge coloring; adjacent vertex-distinguishing acyclic edge coloring; 05C15; 68R10; 94C15;
D O I
暂无
中图分类号
学科分类号
摘要
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uv ∈ E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x′Aa(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.
引用
收藏
页码:439 / 452
页数:13
相关论文
共 50 条
  • [1] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    SHIU Wai Chee
    Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 439 - 452
  • [2] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Shiu Wai Chee
    Chan Wai Hong
    Zhang Zhong-fu
    Bian Liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (04) : 439 - 452
  • [3] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    SHIU Wai Chee
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2011, 26 (04) : 439 - 452
  • [4] On the adjacent vertex-distinguishing equitable edge coloring of graphs
    Jing-wen Li
    Cong Wang
    Zhi-wen Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 615 - 622
  • [5] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Li, Jing-wen
    Wang, Cong
    Wang, Zhi-wen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 615 - 622
  • [6] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Jing-wen LI
    Cong WANG
    Zhi-wen WANG
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 615 - 622
  • [7] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Jingwen LI
    Cong WANG
    Zhiwen WANG
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 615 - 622
  • [8] Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ
    Hervé Hocquard
    Mickaël Montassier
    Journal of Combinatorial Optimization, 2013, 26 : 152 - 160
  • [9] Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ
    Hocquard, Herve
    Montassier, Mickael
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 152 - 160
  • [10] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Yi Wang
    Jian Cheng
    Rong Luo
    Gregory Mulley
    Journal of Combinatorial Optimization, 2016, 31 : 874 - 880