Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations

被引:0
|
作者
Nafiseh Noghrei
Asghar Kerayechian
Ali R. Soheili
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics
[2] Ferdowsi University of Mashhad,Department of Applied Mathematics, School of Mathematical Sciences
来源
Mathematical Sciences | 2022年 / 16卷
关键词
Space-fractional diffusion equations; Riemann–Liouville fractional derivatives; DE-Sinc quadrature method; Gaussian-RBF; 76R50; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
The combination of Sinc quadrature method and double exponential transformation (DE) is a powerful tool to approximate the singular integrals, and radial basis functions (RBFs) are useful for the higher-dimensional space problem. In this study, we develop a numerical method base on Gaussian-RBF combined with QR-factorization of arising matrix and DE-quadrature Sinc method to approximate the solution of two-dimensional space-fractional diffusion equations. When the number of central nodes increases, the ill-conditioning of resultant matrix can be eliminated by using GRBF-QR method. Two numerical examples have been presented to test the efficiency and accuracy of the method.
引用
收藏
页码:87 / 96
页数:9
相关论文
共 50 条
  • [1] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Noghrei, Nafiseh
    Kerayechian, Asghar
    Soheili, Ali R.
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (01) : 87 - 96
  • [2] A FAST FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Basu, Treena S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2444 - A2458
  • [3] An ADI Iteration Method for Solving Discretized Two-Dimensional Space-Fractional Diffusion Equations
    Ran, Yu-Hong
    Wu, Qian-Qian
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [4] IMPLICIT LOCAL RADIAL BASIS FUNCTION METHOD FOR SOLVING TWO-DIMENSIONAL TIME FRACTIONAL DIFFUSION EQUATIONS
    Wei, Song
    Chen, Wen
    Hon, Yiu-Chung
    [J]. THERMAL SCIENCE, 2015, 19 : S59 - S67
  • [5] Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations
    Jin, Xiao-Qing
    Lin, Fu-Rong
    Zhao, Zhi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (02) : 469 - 488
  • [6] An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations
    Xu, Yuan
    Lei, Siu-Long
    Sun, Hai-Wei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 124 : 218 - 226
  • [7] A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations
    Chen, Hao
    lv, Wen
    Zhang, Tongtong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 360 : 1 - 14
  • [8] Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations
    Moghaderi, Hamid
    Dehghan, Mehdi
    Donatelli, Marco
    Mazza, Mariarosa
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 992 - 1011
  • [9] Combination of Sinc and radial basis functions for time-space fractional diffusion equations
    Rick, Solmaz Mohammadi
    Rashidinia, Jalil
    Sheikhani, Amir Hossein Refahi
    [J]. JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (02): : 315 - 329
  • [10] Solving fractional diffusion equations by Sinc and radial basis functions
    Rick, Solmaz Mohammadi
    Rashidinia, Jalil
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)