IMPLICIT LOCAL RADIAL BASIS FUNCTION METHOD FOR SOLVING TWO-DIMENSIONAL TIME FRACTIONAL DIFFUSION EQUATIONS

被引:26
|
作者
Wei, Song [1 ]
Chen, Wen [1 ]
Hon, Yiu-Chung [2 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Coll Mech & Mat, Nanjing, Jiangsu, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
来源
THERMAL SCIENCE | 2015年 / 19卷
基金
中国国家自然科学基金;
关键词
local radial basis function; time fractional diffusion equation; implicit scheme; PARTIAL-DIFFERENTIAL-EQUATIONS; FUNCTION COLLOCATION METHOD; SHAPE PARAMETER; ORDER; APPROXIMATION; ALGORITHM; MODEL;
D O I
10.2298/TSCI15S1S59W
中图分类号
O414.1 [热力学];
学科分类号
摘要
Based on the recently developed local radial basis function method, we devise an implicit local radial basis function scheme, which is intrinsic mesh-free, for solving time fractional diffusion equations. In this paper the L1 scheme and the local radial basis function method are applied for temporal and spatial discretization, respectively, in which the time-marching iteration is performed implicitly. The robustness and accuracy of this proposed implicit local radial basis function method are demonstrated by the numerical example. Furthermore, the sensitivities of the shape parameter c and the number of nodes in the local sub-domain to the accuracy of numerical solutions are also investigated.
引用
收藏
页码:S59 / S67
页数:9
相关论文
共 50 条
  • [1] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Nafiseh Noghrei
    Asghar Kerayechian
    Ali R. Soheili
    [J]. Mathematical Sciences, 2022, 16 : 87 - 96
  • [2] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Noghrei, Nafiseh
    Kerayechian, Asghar
    Soheili, Ali R.
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (01) : 87 - 96
  • [3] A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
    Somayeh Yeganeh
    Reza Mokhtari
    Jan S. Hesthaven
    [J]. Communications on Applied Mathematics and Computation, 2020, 2 : 689 - 709
  • [4] A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
    Yeganeh, Somayeh
    Mokhtari, Reza
    Hesthaven, Jan S.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (04) : 689 - 709
  • [5] Radial basis functions method for solving the fractional diffusion equations
    Zafarghandi, Fahimeh Saberi
    Mohammadi, Maryam
    Babolian, Esmail
    Javadi, Shahnam
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 342 : 224 - 246
  • [6] The Local Radial Basis Function Collocation Method for Solving Two-Dimensional Inverse Cauchy Problems
    Chan, Hsin-Fang
    Fan, Chia-Ming
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2013, 63 (04) : 284 - 303
  • [7] A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain
    Wei, Song
    Chen, Wen
    Zhang, Yong
    Wei, Hui
    Garrard, Rhiannon M.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1209 - 1223
  • [8] A Meshless Local Radial Basis Function Method for Two-Dimensional Incompressible Navier-Stokes Equations
    Wang, Zhi Heng
    Huang, Zhu
    Zhang, Wei
    Xi, Guang
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 67 (04) : 320 - 337
  • [9] An extension of the singular boundary method for solving two dimensional time fractional diffusion equations
    Rivaz, Azim
    Yousefi, Farzane
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 83 : 167 - 179
  • [10] A Parallel Algorithm for the Two-Dimensional Time Fractional Diffusion Equation with Implicit Difference Method
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    Liu, Jie
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,