Instantons, Poisson Structures and Generalized Kähler Geometry

被引:0
|
作者
Nigel Hitchin
机构
[1] Mathematical Institute,
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Modulus Space;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of a generalized Kähler structure, we construct bihermitian metrics on CP2 and CP1×CP1, and show that any such structure on a compact 4-manifold M defines one on the moduli space of anti-self-dual connections on a fixed principal bundle over M. We highlight the role of holomorphic Poisson structures in all these constructions.
引用
收藏
页码:131 / 164
页数:33
相关论文
共 50 条
  • [1] Instantons, Poisson structures and generalized Kahler geometry
    Hitchin, N
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) : 131 - 164
  • [2] Generalized Kähler Geometry
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [3] Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry
    Malin Göteman
    Ulf Lindström
    [J]. Letters in Mathematical Physics, 2011, 95 : 211 - 222
  • [4] Geometry of Poisson Structures and Topology of Lagrangian Submanifolds. Kähler Class
    V. V. Trofimov
    N. Yu. Selivanova
    [J]. Journal of Mathematical Sciences, 2004, 119 (5) : 684 - 690
  • [5] Symmetries in Generalized Kähler Geometry
    Yi Lin
    Susan Tolman
    [J]. Communications in Mathematical Physics, 2006, 268 : 199 - 222
  • [6] Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry
    Biquard, Olivier
    Gauduchon, Paul
    LeBrun, Claude
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024,
  • [7] Generalized Kähler Geometry, Gerbes, and all that
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2009, 90 : 373 - 382
  • [8] Blow-Ups in Generalized Kähler Geometry
    J. L. van der Leer Durán
    [J]. Communications in Mathematical Physics, 2018, 357 : 1133 - 1156
  • [9] The Gibbons–Hawking Ansatz in Generalized Kähler Geometry
    Jeffrey Streets
    Yury Ustinovskiy
    [J]. Communications in Mathematical Physics, 2022, 391 : 707 - 778
  • [10] Generalized Kähler geometry in (2, 1) superspace
    Chris Hull
    Ulf Lindström
    Martin Roček
    Rikard von Unge
    Maxim Zabzine
    [J]. Journal of High Energy Physics, 2012