Instantons, Poisson Structures and Generalized Kähler Geometry

被引:0
|
作者
Nigel Hitchin
机构
[1] Mathematical Institute,
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Modulus Space;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of a generalized Kähler structure, we construct bihermitian metrics on CP2 and CP1×CP1, and show that any such structure on a compact 4-manifold M defines one on the moduli space of anti-self-dual connections on a fixed principal bundle over M. We highlight the role of holomorphic Poisson structures in all these constructions.
引用
收藏
页码:131 / 164
页数:33
相关论文
共 50 条
  • [21] Deformed graded Poisson structures, generalized geometry and supergravity
    Boffo, Eugenia
    Schupp, Peter
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
  • [22] Mass in Kähler Geometry
    Hans-Joachim Hein
    Claude LeBrun
    [J]. Communications in Mathematical Physics, 2016, 347 : 183 - 221
  • [23] Algebraic Geometry versus Kähler geometry
    Claire Voisin
    [J]. Milan Journal of Mathematics, 2010, 78 : 85 - 116
  • [24] The generalized Kähler geometry of N = (2, 2) WZW-models
    Alexander Sevrin
    Wieland Staessens
    Dimitri Terryn
    [J]. Journal of High Energy Physics, 2011
  • [25] Generalized Kähler structures on group manifolds and T-duality
    J. P. Ang
    Sibylle Driezen
    Martin Roček
    Alexander Sevrin
    [J]. Journal of High Energy Physics, 2018
  • [26] Forms and currents defining generalized p-Kähler structures
    Lucia Alessandrini
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2018, 88 : 217 - 245
  • [27] Hyper-Kähler instantons, symmetries, and flat spaces
    Araneda, Bernardo
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [28] A uniqueness theorem in Kähler geometry
    Pengfei Guan
    Qun Li
    Xi Zhang
    [J]. Mathematische Annalen, 2009, 345 : 377 - 393
  • [29] Kähler geometry of Douady spaces
    Reynir Axelsson
    Georg Schumacher
    [J]. manuscripta mathematica, 2006, 121 : 277 - 291
  • [30] Special metrics in Kähler geometry
    Eleonora Di Nezza
    [J]. Bollettino dell'Unione Matematica Italiana, 2021, 14 : 43 - 49