The generalized Kähler geometry of N = (2, 2) WZW-models

被引:0
|
作者
Alexander Sevrin
Wieland Staessens
Dimitri Terryn
机构
[1] Theoretische Natuurkunde,Institut für Physik (WA THEP)
[2] Vrije Universiteit Brussel and The International Solvay Institutes,undefined
[3] Johannes-Gutenberg-Universität,undefined
关键词
Flux compactifications; Superstrings and Heterotic Strings; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
N = (2, 2), d = 2 supersymmetric non-linear σ-models provide a physical realization of Hitchin’s and Gualtieri’s generalized Kähler geometry. A large subclass of such models are comprised by WZW-models on even-dimensional reductive group manifolds. In the present paper we analyze the complex structures, type changing, the superfield content and the affine isometries compatible with the extra supersymmetry. The results are illustrated by an exhaustive discussion of the N = (2, 2) WZW-models on S3 × S1 and S3 × S3 where various aspects of generalized Kähler and Calabi-Yau geometry are verified and clarified. The examples illustrate a slightly weaker definition for an N = (2, 2) superconformal generalized Kähler geometry compared to that for a generalized Calabi-Yau geometry.
引用
收藏
相关论文
共 50 条
  • [1] The generalized Kahler geometry of N = (2,2) WZW-models
    Sevrin, Alexander
    Staessens, Wieland
    Terryn, Dimitri
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [2] Generalized Kähler geometry in (2, 1) superspace
    Chris Hull
    Ulf Lindström
    Martin Roček
    Rikard von Unge
    Maxim Zabzine
    [J]. Journal of High Energy Physics, 2012
  • [3] Generalized Kähler Geometry
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [4] Generalized Kähler Geometry from Supersymmetric Sigma Models
    Andreas Bredthauer
    Ulf Lindström
    Jonas Persson
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2006, 77 : 291 - 308
  • [5] Semichiral fields on S2 and generalized Kähler geometry
    Francesco Benini
    P. Marcos Crichigno
    Dharmesh Jain
    Jun Nian
    [J]. Journal of High Energy Physics, 2016
  • [6] Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry
    Malin Göteman
    Ulf Lindström
    [J]. Letters in Mathematical Physics, 2011, 95 : 211 - 222
  • [7] Symmetries in Generalized Kähler Geometry
    Yi Lin
    Susan Tolman
    [J]. Communications in Mathematical Physics, 2006, 268 : 199 - 222
  • [8] Generalized Kahler geometry and current algebras in classical N=2 superconformal WZW model
    Parkhomenko, S. E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (12):
  • [9] Generalized Kähler Geometry, Gerbes, and all that
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2009, 90 : 373 - 382
  • [10] Blow-Ups in Generalized Kähler Geometry
    J. L. van der Leer Durán
    [J]. Communications in Mathematical Physics, 2018, 357 : 1133 - 1156