Semichiral fields on S2 and generalized Kähler geometry

被引:0
|
作者
Francesco Benini
P. Marcos Crichigno
Dharmesh Jain
Jun Nian
机构
[1] State University of New York,Simons Center for Geometry and Physics
[2] University of California,KITP
[3] University of Amsterdam,Delta Institute for Theoretical Physics
[4] Imperial College London,Blackett Laboratory
[5] Utrecht University,Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena
[6] National Taiwan University,Center for Theoretical Sciences, Department of Physics
[7] State University of New York,C.N. Yang Institute for Theoretical Physics
关键词
Supersymmetric gauge theory; Field Theories in Lower Dimensions; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of two-dimensional N=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,2\right) $$\end{document} supersymmetric gauge theories, given by semichiral multiplets coupled to the usual vector multiplet. In the UV, these theories are traditional gauge theories deformed by a gauged Wess-Zumino term. In the IR, they give rise to nonlinear sigma models on noncompact generalized Kähler manifolds, which contain a three-form field H and whose metric is not Kähler. We place these theories on S2 and compute their partition function exactly with localization techniques. We find that the contribution of instantons to the partition function that we define is insensitive to the deformation, and discuss our results from the point of view of the generalized Kähler target space.
引用
收藏
相关论文
共 50 条
  • [1] Semichiral fields on S2 and generalized Kahler geometry
    Benini, Francesco
    Crichigno, P. Marcos
    Jain, Dharmesh
    Nian, Jun
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01): : 1 - 41
  • [2] Generalized Kähler Geometry
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [3] Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry
    Malin Göteman
    Ulf Lindström
    [J]. Letters in Mathematical Physics, 2011, 95 : 211 - 222
  • [4] Generalized Kähler geometry in (2, 1) superspace
    Chris Hull
    Ulf Lindström
    Martin Roček
    Rikard von Unge
    Maxim Zabzine
    [J]. Journal of High Energy Physics, 2012
  • [5] Symmetries in Generalized Kähler Geometry
    Yi Lin
    Susan Tolman
    [J]. Communications in Mathematical Physics, 2006, 268 : 199 - 222
  • [6] Generalized Kähler Geometry, Gerbes, and all that
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2009, 90 : 373 - 382
  • [7] Semichiral Sigma models with 4D hyperkähler geometry
    M. Göteman
    U. Lindström
    M. Roček
    [J]. Journal of High Energy Physics, 2013
  • [8] The generalized Kähler geometry of N = (2, 2) WZW-models
    Alexander Sevrin
    Wieland Staessens
    Dimitri Terryn
    [J]. Journal of High Energy Physics, 2011
  • [9] Blow-Ups in Generalized Kähler Geometry
    J. L. van der Leer Durán
    [J]. Communications in Mathematical Physics, 2018, 357 : 1133 - 1156
  • [10] The Gibbons–Hawking Ansatz in Generalized Kähler Geometry
    Jeffrey Streets
    Yury Ustinovskiy
    [J]. Communications in Mathematical Physics, 2022, 391 : 707 - 778