Generalized Kähler geometry in (2, 1) superspace

被引:0
|
作者
Chris Hull
Ulf Lindström
Martin Roček
Rikard von Unge
Maxim Zabzine
机构
[1] Imperial College London,The Blackett Laboratory
[2] Department of Physics and Astronomy Uppsala University,C.N.Yang Institute for Theoretical Physics
[3] Stony Brook University,Institute for Theoretical Physics
[4] Masaryk University,undefined
关键词
Differential and Algebraic Geometry; Extended Supersymmetry; Superspaces;
D O I
暂无
中图分类号
学科分类号
摘要
Two-dimensional (2, 2) supersymmetric nonlinear sigma models can be described in (2, 2), (2, 1) or (1, 1) superspaces. Each description emphasizes different aspects of generalized Kähler geometry. We investigate the reduction from (2, 2) to (2, 1) superspace. This has some interesting nontrivial features arising from the elimination of nondynamical fields. We compare quantization in the different superspace formulations.
引用
收藏
相关论文
共 50 条
  • [1] Generalized Kähler Geometry
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [2] Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry
    Malin Göteman
    Ulf Lindström
    [J]. Letters in Mathematical Physics, 2011, 95 : 211 - 222
  • [3] Symmetries in Generalized Kähler Geometry
    Yi Lin
    Susan Tolman
    [J]. Communications in Mathematical Physics, 2006, 268 : 199 - 222
  • [4] Generalized Kähler Geometry, Gerbes, and all that
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2009, 90 : 373 - 382
  • [5] Generalized Kahler geometry in (2,1) superspace
    Hull, Chris
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [6] Semichiral fields on S2 and generalized Kähler geometry
    Francesco Benini
    P. Marcos Crichigno
    Dharmesh Jain
    Jun Nian
    [J]. Journal of High Energy Physics, 2016
  • [7] The generalized Kähler geometry of N = (2, 2) WZW-models
    Alexander Sevrin
    Wieland Staessens
    Dimitri Terryn
    [J]. Journal of High Energy Physics, 2011
  • [8] Blow-Ups in Generalized Kähler Geometry
    J. L. van der Leer Durán
    [J]. Communications in Mathematical Physics, 2018, 357 : 1133 - 1156
  • [9] The Gibbons–Hawking Ansatz in Generalized Kähler Geometry
    Jeffrey Streets
    Yury Ustinovskiy
    [J]. Communications in Mathematical Physics, 2022, 391 : 707 - 778
  • [10] Generalized Kähler Geometry of Instanton Moduli Spaces
    Henrique Bursztyn
    Gil R. Cavalcanti
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2015, 333 : 831 - 860