Generalized Kähler geometry in (2, 1) superspace

被引:0
|
作者
Chris Hull
Ulf Lindström
Martin Roček
Rikard von Unge
Maxim Zabzine
机构
[1] Imperial College London,The Blackett Laboratory
[2] Department of Physics and Astronomy Uppsala University,C.N.Yang Institute for Theoretical Physics
[3] Stony Brook University,Institute for Theoretical Physics
[4] Masaryk University,undefined
关键词
Differential and Algebraic Geometry; Extended Supersymmetry; Superspaces;
D O I
暂无
中图分类号
学科分类号
摘要
Two-dimensional (2, 2) supersymmetric nonlinear sigma models can be described in (2, 2), (2, 1) or (1, 1) superspaces. Each description emphasizes different aspects of generalized Kähler geometry. We investigate the reduction from (2, 2) to (2, 1) superspace. This has some interesting nontrivial features arising from the elimination of nondynamical fields. We compare quantization in the different superspace formulations.
引用
收藏
相关论文
共 50 条
  • [21] On Nearly-Kähler Geometry
    Paul-Andi Nagy
    [J]. Annals of Global Analysis and Geometry, 2002, 22 : 167 - 178
  • [22] THE KHLER GEOMETRY ON THE REINHARDT DOMAINS
    殷慰萍
    [J]. Science Bulletin, 1988, (05) : 436 - 437
  • [23] THE SPIN (3/2, 1) MULTIPLET AND SUPERSPACE GEOMETRY
    GATES, SJ
    GRIMM, R
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1984, 26 (04): : 621 - 625
  • [24] Quantized Kähler Geometry and Quantum Gravity
    Jungjai Lee
    Hyun Seok Yang
    [J]. Journal of the Korean Physical Society, 2018, 72 : 1421 - 1441
  • [25] Geometry of four-dimensional Kähler and para-Kähler Lie groups
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (02)
  • [26] Topics in Hyper-Kähler Geometry
    [J]. Milan Journal of Mathematics, 2022, 90 : 303 - 304
  • [27] Fractional almost Kähler–Lagrange geometry
    Dumitru Baleanu
    Sergiu I. Vacaru
    [J]. Nonlinear Dynamics, 2011, 64 : 365 - 373
  • [28] Null Kähler Geometry and Isomonodromic Deformations
    Maciej Dunajski
    [J]. Communications in Mathematical Physics, 2022, 391 : 77 - 105
  • [29] Mass, Kähler manifolds, and symplectic geometry
    Claude LeBrun
    [J]. Annals of Global Analysis and Geometry, 2019, 56 : 97 - 112
  • [30] The Map Between Conformal Hypercomplex/ Hyper-Kähler and Quaternionic(-Kähler) Geometry
    Eric Bergshoeff
    Sorin Cucu
    Tim de Wit
    Jos Gheerardyn
    Stefan Vandoren
    Antoine Van Proeyen
    [J]. Communications in Mathematical Physics, 2006, 262 : 411 - 457