THE KHLER GEOMETRY ON THE REINHARDT DOMAINS

被引:1
|
作者
殷慰萍
机构
[1] Hetei
[2] University of Science and Technology of China
[3] Department oF Mathematics
关键词
一夕; THE K; HLER GEOMETRY ON THE REINHARDT DOMAINS;
D O I
暂无
中图分类号
学科分类号
摘要
Let D = D(K) = {z = (z, z, …, z) = (z, Z) ∈ C~n| |z|+ |z|~2 < 1, K > 0, K ≠ 1}. The author has proved that the Khler metric, which is generated by the K(z, ) = (1 — | Z|~2)~(-n+(n-j)/K)[(1 — |Z|~2)- |z|~2]~(-(n+1)+j)(0 ≤ j ≤ n), is invariant on D under the Aut (D) ——the full group of the analytic automorphisms of D. Now,
引用
收藏
页码:436 / 437
页数:2
相关论文
共 50 条
  • [1] THE KAHLER GEOMETRY ON THE REINHARDT DOMAINS
    YIN, WP
    KEXUE TONGBAO, 1988, 33 (05): : 436 - 437
  • [2] Reinhardt域的Khler几何
    殷慰萍
    科学通报 , 1987, (11) : 876 - 877
  • [3] Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry
    Malin Göteman
    Ulf Lindström
    Letters in Mathematical Physics, 2011, 95 : 211 - 222
  • [4] Generalized Kähler Geometry
    Marco Gualtieri
    Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [5] Mass in Kähler Geometry
    Hans-Joachim Hein
    Claude LeBrun
    Communications in Mathematical Physics, 2016, 347 : 183 - 221
  • [6] Algebraic Geometry versus Kähler geometry
    Claire Voisin
    Milan Journal of Mathematics, 2010, 78 : 85 - 116
  • [7] A uniqueness theorem in Kähler geometry
    Pengfei Guan
    Qun Li
    Xi Zhang
    Mathematische Annalen, 2009, 345 : 377 - 393
  • [8] A Kähler structure of the triplectic geometry
    M. A. Grigoriev
    A. M. Semikhatov
    Theoretical and Mathematical Physics, 2000, 124 : 1157 - 1171
  • [9] Special metrics in Kähler geometry
    Eleonora Di Nezza
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 43 - 49
  • [10] Kähler geometry of Douady spaces
    Reynir Axelsson
    Georg Schumacher
    manuscripta mathematica, 2006, 121 : 277 - 291