Instantons, Poisson Structures and Generalized Kähler Geometry

被引:0
|
作者
Nigel Hitchin
机构
[1] Mathematical Institute,
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Modulus Space;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of a generalized Kähler structure, we construct bihermitian metrics on CP2 and CP1×CP1, and show that any such structure on a compact 4-manifold M defines one on the moduli space of anti-self-dual connections on a fixed principal bundle over M. We highlight the role of holomorphic Poisson structures in all these constructions.
引用
收藏
页码:131 / 164
页数:33
相关论文
共 50 条
  • [41] Geometry of four-dimensional Kähler and para-Kähler Lie groups
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (02)
  • [42] Fractional almost Kähler–Lagrange geometry
    Dumitru Baleanu
    Sergiu I. Vacaru
    [J]. Nonlinear Dynamics, 2011, 64 : 365 - 373
  • [43] Topics in Hyper-Kähler Geometry
    [J]. Milan Journal of Mathematics, 2022, 90 : 303 - 304
  • [44] Generalized Poisson structures
    de Azcarraga, JA
    Perelomov, AM
    Bueno, JCP
    [J]. GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 884 - 888
  • [45] Null Kähler Geometry and Isomonodromic Deformations
    Maciej Dunajski
    [J]. Communications in Mathematical Physics, 2022, 391 : 77 - 105
  • [46] Mass, Kähler manifolds, and symplectic geometry
    Claude LeBrun
    [J]. Annals of Global Analysis and Geometry, 2019, 56 : 97 - 112
  • [47] The Map Between Conformal Hypercomplex/ Hyper-Kähler and Quaternionic(-Kähler) Geometry
    Eric Bergshoeff
    Sorin Cucu
    Tim de Wit
    Jos Gheerardyn
    Stefan Vandoren
    Antoine Van Proeyen
    [J]. Communications in Mathematical Physics, 2006, 262 : 411 - 457
  • [48] The Map Between Conformal Hypercomplex/Hyper-Kähler and Quaternionic(-Kähler) Geometry
    Eric Bergshoeff
    Stefan Vandoren
    Antoine Van Proeyen
    [J]. Communications in Mathematical Physics, 2007, 274 : 553 - 553
  • [49] Kähler structures on complex torus
    Meng-Kiat Chuah
    [J]. The Journal of Geometric Analysis, 2000, 10 (2): : 257 - 267
  • [50] Hypercomplex structures on Kähler manifolds
    M. Verbitsky
    [J]. Geometric & Functional Analysis GAFA, 2005, 15 : 1275 - 1283