Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry

被引:0
|
作者
Biquard, Olivier [1 ,2 ]
Gauduchon, Paul [3 ]
LeBrun, Claude [4 ]
机构
[1] Sorbonne Univ, Paris, France
[2] Univ Paris Cite, CNRS, IMJ PRG, F-75005 Paris, France
[3] Ecole Polytech, CNRS, CMLS, F-91120 Palaiseau, France
[4] SUNY Stony Brook, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
EINSTEIN MANIFOLDS; KAHLER-MANIFOLDS;
D O I
10.1093/imrn/rnae200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [], the first two authors classified complete Ricci-flat ALF Riemannian 4-manifolds that are toric and Hermitian, but non-K & auml;hler. In this article, we consider general Ricci-flat metrics on these spaces that are close to a given such gravitational instanton with respect to a norm that imposes reasonable fall-off conditions at infinity. We prove that any such Ricci-flat perturbation is necessarily Hermitian and carries a bounded, non-trivial Killing vector field. With mild additional hypotheses, we are then able to show that the new Ricci-flat metric must actually be one of the known gravitational instantons classified in [].
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Weyl Curvature, Del Pezzo Surfaces, and Almost-Kähler Geometry
    Claude LeBrun
    [J]. The Journal of Geometric Analysis, 2015, 25 : 1744 - 1772
  • [2] Compact conformally Kähler Einstein-Weyl manifolds
    Włodzimierz Jelonek
    [J]. Annals of Global Analysis and Geometry, 2013, 43 : 19 - 29
  • [3] Biharmonic holomorphic maps and conformally Kähler geometry
    M. Benyounes
    E. Loubeau
    R. Slobodeanu
    [J]. Israel Journal of Mathematics, 2014, 201 : 525 - 542
  • [4] Instantons, Poisson Structures and Generalized Kähler Geometry
    Nigel Hitchin
    [J]. Communications in Mathematical Physics, 2006, 265 : 131 - 164
  • [5] The Einstein–Maxwell Equations and Conformally Kähler Geometry
    Claude LeBrun
    [J]. Communications in Mathematical Physics, 2016, 344 : 621 - 653
  • [6] Conformally Kähler surfaces and orthogonal holomorphic bisectional curvature
    Mustafa Kalafat
    Caner Koca
    [J]. Geometriae Dedicata, 2015, 174 : 401 - 408
  • [7] Geometry of gravitational instantons
    Marathe, KB
    Martucci, G
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (09): : 1175 - 1189
  • [8] Einstein manifolds, self-dual Weyl curvature, and conformally Kahler geometry
    LeBrun, Claude
    [J]. MATHEMATICAL RESEARCH LETTERS, 2021, 28 (01) : 127 - 144
  • [9] Gravitational instantons of constant curvature
    Ratcliffe, JG
    Tschantz, ST
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2613 - 2627
  • [10] Gravitational instantons with conformally coupled scalar fields
    José Barrientos
    Adolfo Cisterna
    Cristóbal Corral
    Marcelo Oyarzo
    [J]. Journal of High Energy Physics, 2022