Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry

被引:0
|
作者
Biquard, Olivier [1 ,2 ]
Gauduchon, Paul [3 ]
LeBrun, Claude [4 ]
机构
[1] Sorbonne Univ, Paris, France
[2] Univ Paris Cite, CNRS, IMJ PRG, F-75005 Paris, France
[3] Ecole Polytech, CNRS, CMLS, F-91120 Palaiseau, France
[4] SUNY Stony Brook, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
EINSTEIN MANIFOLDS; KAHLER-MANIFOLDS;
D O I
10.1093/imrn/rnae200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [], the first two authors classified complete Ricci-flat ALF Riemannian 4-manifolds that are toric and Hermitian, but non-K & auml;hler. In this article, we consider general Ricci-flat metrics on these spaces that are close to a given such gravitational instanton with respect to a norm that imposes reasonable fall-off conditions at infinity. We prove that any such Ricci-flat perturbation is necessarily Hermitian and carries a bounded, non-trivial Killing vector field. With mild additional hypotheses, we are then able to show that the new Ricci-flat metric must actually be one of the known gravitational instantons classified in [].
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Locally conformally Kähler spaces and proper open morphisms
    Preda, Ovidiu
    Stanciu, Miron
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 66 (01)
  • [42] Automorphisms and Deformations of Conformally Kähler, Einstein–Maxwell Metrics
    Abdellah Lahdili
    [J]. The Journal of Geometric Analysis, 2019, 29 : 542 - 568
  • [43] A uniqueness theorem in Kähler geometry
    Pengfei Guan
    Qun Li
    Xi Zhang
    [J]. Mathematische Annalen, 2009, 345 : 377 - 393
  • [44] A flow of conformally balanced metrics with Kähler fixed points
    Duong H. Phong
    Sebastien Picard
    Xiangwen Zhang
    [J]. Mathematische Annalen, 2019, 374 : 2005 - 2040
  • [45] Hyper-Kähler instantons, symmetries, and flat spaces
    Araneda, Bernardo
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [46] A note on Euler number of locally conformally Kähler manifolds
    Teng Huang
    [J]. Mathematische Zeitschrift, 2020, 296 : 1725 - 1733
  • [47] Conformally Kähler, Einstein–Maxwell metrics on Hirzebruch surfaces
    Isaque Viza de Souza
    [J]. Annals of Global Analysis and Geometry, 2021, 59 : 263 - 284
  • [48] Classification of the conformally flat Tchebychev affine Kähler hypersurfaces
    Lei, Miaoxin
    Xu, Ruiwei
    Zhao, Peibiao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [49] Diameter estimates in Kähler geometry
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (08) : 3520 - 3556
  • [50] Special metrics in Kähler geometry
    Eleonora Di Nezza
    [J]. Bollettino dell'Unione Matematica Italiana, 2021, 14 : 43 - 49