Conformally Kähler surfaces and orthogonal holomorphic bisectional curvature

被引:0
|
作者
Mustafa Kalafat
Caner Koca
机构
[1] Tunceli Üniversitesi,Department of Mathematics
[2] Vanderbilt University,undefined
来源
Geometriae Dedicata | 2015年 / 174卷
关键词
Einstein metrics; Holomorphic curvature; Complex surfaces; 4-Manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a compact complex surface which admits a conformally Kähler metric g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} of positive orthogonal holomorphic bisectional curvature is biholomorphic to the complex projective plane. In addition, if g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} is a Hermitian metric which is Einstein, then the biholomorphism can be chosen to be an isometry via which g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} becomes a multiple of the Fubini-Study metric.
引用
收藏
页码:401 / 408
页数:7
相关论文
共 50 条