Weyl Curvature, Del Pezzo Surfaces, and Almost-Kähler Geometry

被引:0
|
作者
Claude LeBrun
机构
[1] Stony Brook University,Department of Mathematics
来源
关键词
Curvature functional; Weyl curvature; Einstein metric; 4-manifold; Symplectic form; Conformal structure; Primary 53C25; Secondary 14J45; 53A30; 53D35;
D O I
暂无
中图分类号
学科分类号
摘要
If a smooth compact 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}-manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} admits a Kähler–Einstein metric g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} of positive scalar curvature, Gursky (Ann Math 148:315–337, 1998) showed that its conformal class [g]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[g]$$\end{document} is an absolute minimizer of the Weyl functional among all conformal classes with positive Yamabe constant. Here we prove that, with the same hypotheses, [g]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[g]$$\end{document} also minimizes of the Weyl functional on a different open set of conformal classes, most of which have negative Yamabe constant. An analogous minimization result is then proved for Einstein metrics g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} which are Hermitian, but not Kähler.
引用
收藏
页码:1744 / 1772
页数:28
相关论文
共 50 条