Extremal Almost-Kähler Metrics and Seiberg–Witten Theory

被引:0
|
作者
Chanyoung Sung
机构
[1] SUNY at Stony Brook,Department of Mathematics
来源
关键词
almost-Kähler; Weyl curvature; Seiberg–Witten theory;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there exist compact non-Kähler almost-Kähler4-manifolds whose metrics minimize L2-norm of(2/3) s + 2w among all metrics compatible with a fixeddecomposition H2(M, ℝ= H+ ⊕ H−, where s is the scalar curvature and w is the lowest eigenvalue of self-dual Weyl curvature at each point. In particular, the moduli space of such metrics modulo diffeomorphisms is infinite dimensional. This example also shows that LeBrun's estimate of L2-norm of (1 − δ)s + δ · 6won a compact oriented Riemannian4-manifold with a nontrivial Seiberg–Witten invariant cannot beextended over δ = 1/3.
引用
收藏
页码:155 / 166
页数:11
相关论文
共 50 条