Strongly Extremal Kähler Metrics

被引:0
|
作者
Santiago R. Simanca
机构
[1] The University at Stony Brook,Department of Applied Mathematics & Statistics
来源
关键词
conformal metrics; extremal Kähler metrics;
D O I
暂无
中图分类号
学科分类号
摘要
On a compact complex manifold (M, J) of the Kähler type, we consider the functional defined by the L2-norm of the scalar curvature with its domain the space of Kähler metrics of fixed total volume. We calculate its critical points, and derive a formula that relates the Kähler and Ricci forms of such metrics on surfaces. If these metrics have a nonzero constant scalar curvature, then they must be Einstein. For surfaces, if the scalar curvature is nonconstant, these critical metrics are conformally equivalent to non-Kähler Einstein metrics on an open dense subset of the manifold. We also calculate the Hessian of the lower bound of the functional at a critical extremal class, and show that, in low dimensions, these classes are weakly stable minima for the said bound. We use this result to discuss some applications concerning the two-points blow-up of CP2.
引用
收藏
页码:29 / 46
页数:17
相关论文
共 50 条
  • [1] Quantisation of Extremal Kähler Metrics
    Yoshinori Hashimoto
    [J]. The Journal of Geometric Analysis, 2021, 31 : 2970 - 3028
  • [2] Khler Finsler Metrics Are Actually Strongly Khler
    Bin CHEN Yibing SHEN Center of Mathematical Science
    [J]. Chinese Annals of Mathematics, 2009, 30 (02) : 173 - 178
  • [3] Kähler Finsler metrics are actually strongly Kähler
    Bin Chen
    Yibing Shen
    [J]. Chinese Annals of Mathematics, Series B, 2009, 30 : 173 - 178
  • [4] Extremal Kähler Metrics of Toric Manifolds
    An-Min Li
    Li Sheng
    [J]. Chinese Annals of Mathematics, Series B, 2023, 44 : 827 - 836
  • [5] A Splitting Theorem for Extremal Kähler Metrics
    Vestislav Apostolov
    Hongnian Huang
    [J]. The Journal of Geometric Analysis, 2015, 25 : 149 - 170
  • [6] Extremal K?hler Metrics of Toric Manifolds
    An-Min LI
    Li SHENG
    [J]. Chinese Annals of Mathematics,Series B, 2023, (06) : 827 - 836
  • [7] The CR geometry of weighted extremal Kähler and Sasaki metrics
    Vestislav Apostolov
    David M. J. Calderbank
    [J]. Mathematische Annalen, 2021, 379 : 1047 - 1088
  • [8] Extremal Kähler Poincaré Type Metrics on Toric Varieties
    Vestislav Apostolov
    Hugues Auvray
    Lars Martin Sektnan
    [J]. The Journal of Geometric Analysis, 2021, 31 : 1223 - 1290
  • [9] Extremal Kähler metrics and energy functionals on projective bundles
    Haozhao Li
    [J]. Annals of Global Analysis and Geometry, 2012, 41 : 423 - 445
  • [10] Extremal Almost-Kähler Metrics and Seiberg–Witten Theory
    Chanyoung Sung
    [J]. Annals of Global Analysis and Geometry, 2002, 22 : 155 - 166