On the numerical condition of a generalized Hankel eigenvalue problem

被引:0
|
作者
B. Beckermann
G. H. Golub
G. Labahn
机构
[1] UFR Mathématiques – M3,Laboratoire Painlevé UMR 8524 (ANO
[2] Stanford University,EDP)
[3] University of Waterloo,Fletcher Jones Professor of Computer Science
来源
Numerische Mathematik | 2007年 / 106卷
关键词
15A18; 65F35; 15A12; 30E10;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized eigenvalue problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde H y \,{=}\, \lambda H y$$\end{document} with H a Hankel matrix and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde H$$\end{document} the corresponding shifted Hankel matrix occurs in number of applications such as the reconstruction of the shape of a polygon from its moments, the determination of abscissa of quadrature formulas, of poles of Padé approximants, or of the unknown powers of a sparse black box polynomial in computer algebra. In many of these applications, the entries of the Hankel matrix are only known up to a certain precision. We study the sensitivity of the nonlinear application mapping the vector of Hankel entries to its generalized eigenvalues. A basic tool in this study is a result on the condition number of Vandermonde matrices with not necessarily real abscissas which are possibly row-scaled.
引用
收藏
页码:41 / 68
页数:27
相关论文
共 50 条
  • [41] GENERALIZED EIGENVALUE PROBLEM IN QUANTUM CHEMISTRY
    FORD, B
    HALL, G
    COMPUTER PHYSICS COMMUNICATIONS, 1974, 8 (05) : 337 - 348
  • [42] The Inverse Generalized Eigenvalue Problem for Generalized Antireflexive Matrices
    Yuan, Yandong
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 414 - 417
  • [43] The generalized inverse eigenvalue problem for generalized reflexive matrices
    Liang Maolin
    Dai Lifang
    He Wansheng
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 42 - 47
  • [44] EXPANSION THEOREM FOR AN EIGENVALUE PROBLEM WITH EIGENVALUE PARAMETER IN THE BOUNDARY-CONDITION
    HINTON, DB
    QUARTERLY JOURNAL OF MATHEMATICS, 1979, 30 (117): : 33 - 42
  • [45] Numerical deflation of the transcendental eigenvalue problem
    Singh, Kumar Vikram
    Ram, Yitshak M.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 83 : 522 - 532
  • [46] A sufficient and necessary condition and a numerical solution for double dimension inverse eigenvalue problem of Jacobi matrices
    Wu, Xiao-Qian
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 345 - 348
  • [47] On the Numerical Solution of a Transmission Eigenvalue Problem
    Gegovska-Zajkova, S.
    Jovanovic, Bosko S.
    Jovanovic, Irena M.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 289 - +
  • [48] NUMERICAL SOLUTION OF A NONLINEAR EIGENVALUE PROBLEM
    BOUWKAMP, CJ
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1965, 68 (04): : 539 - &
  • [49] Numerical solution of a quadratic eigenvalue problem
    Guo, CH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 : 391 - 406
  • [50] Structured backward error and condition of generalized eigenvalue problems
    Higham, DJ
    Higham, NJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) : 493 - 512