On the numerical condition of a generalized Hankel eigenvalue problem

被引:0
|
作者
B. Beckermann
G. H. Golub
G. Labahn
机构
[1] UFR Mathématiques – M3,Laboratoire Painlevé UMR 8524 (ANO
[2] Stanford University,EDP)
[3] University of Waterloo,Fletcher Jones Professor of Computer Science
来源
Numerische Mathematik | 2007年 / 106卷
关键词
15A18; 65F35; 15A12; 30E10;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized eigenvalue problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde H y \,{=}\, \lambda H y$$\end{document} with H a Hankel matrix and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde H$$\end{document} the corresponding shifted Hankel matrix occurs in number of applications such as the reconstruction of the shape of a polygon from its moments, the determination of abscissa of quadrature formulas, of poles of Padé approximants, or of the unknown powers of a sparse black box polynomial in computer algebra. In many of these applications, the entries of the Hankel matrix are only known up to a certain precision. We study the sensitivity of the nonlinear application mapping the vector of Hankel entries to its generalized eigenvalues. A basic tool in this study is a result on the condition number of Vandermonde matrices with not necessarily real abscissas which are possibly row-scaled.
引用
收藏
页码:41 / 68
页数:27
相关论文
共 50 条
  • [31] GENERALIZED EIGENVALUE PROBLEM OF AN ECONOMETRIC MODEL
    MORI, K
    ECONOMETRICA, 1971, 39 (04) : 193 - &
  • [32] THE GENERALIZED ROTATION MATRIX AND THE EIGENVALUE PROBLEM
    BAYHA, WT
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (04) : 370 - 371
  • [33] AN ALGORITHM FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM
    BUNSEGERSTNER, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) : 43 - 68
  • [34] GENERALIZED EIGENVALUE COMPLEMENTARITY PROBLEM FOR TENSORS
    Chen, Zhongming
    Yang, Qingzhi
    Ye, Lu
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 527 - 545
  • [35] Quantum algorithms for the generalized eigenvalue problem
    Jin-Min Liang
    Shu-Qian Shen
    Ming Li
    Shao-Ming Fei
    Quantum Information Processing, 2022, 21
  • [36] Generalized eigenvalue problem for interval matrices
    Singh, Sarishti
    Panda, Geetanjali
    ARCHIV DER MATHEMATIK, 2023, 121 (03) : 267 - 278
  • [37] PERTURBATION THEOREMS FOR THE GENERALIZED EIGENVALUE PROBLEM
    ELSNER, L
    SUN, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 48 (DEC) : 341 - 357
  • [38] A generalized eigenvalue problem in the max algebra
    Binding, P. A.
    Volkmer, H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 360 - 371
  • [39] Generalized eigenvalue problem for interval matrices
    Sarishti Singh
    Geetanjali Panda
    Archiv der Mathematik, 2023, 121 : 267 - 278
  • [40] ITERATIVE SOLUTION OF GENERALIZED EIGENVALUE PROBLEM
    PAPACONSTANTINOU, C
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1976, 17 (02): : 255 - 260