On the numerical condition of a generalized Hankel eigenvalue problem

被引:0
|
作者
B. Beckermann
G. H. Golub
G. Labahn
机构
[1] UFR Mathématiques – M3,Laboratoire Painlevé UMR 8524 (ANO
[2] Stanford University,EDP)
[3] University of Waterloo,Fletcher Jones Professor of Computer Science
来源
Numerische Mathematik | 2007年 / 106卷
关键词
15A18; 65F35; 15A12; 30E10;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized eigenvalue problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde H y \,{=}\, \lambda H y$$\end{document} with H a Hankel matrix and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde H$$\end{document} the corresponding shifted Hankel matrix occurs in number of applications such as the reconstruction of the shape of a polygon from its moments, the determination of abscissa of quadrature formulas, of poles of Padé approximants, or of the unknown powers of a sparse black box polynomial in computer algebra. In many of these applications, the entries of the Hankel matrix are only known up to a certain precision. We study the sensitivity of the nonlinear application mapping the vector of Hankel entries to its generalized eigenvalues. A basic tool in this study is a result on the condition number of Vandermonde matrices with not necessarily real abscissas which are possibly row-scaled.
引用
收藏
页码:41 / 68
页数:27
相关论文
共 50 条
  • [21] FUZZY EIGENVALUE PROBLEM WITH EIGENVALUE PARAMETER CONTAINED IN THE BOUNDARY CONDITION
    Ceylan, Tahir
    Altinisik, Nihat
    JOURNAL OF SCIENCE AND ARTS, 2018, (03): : 589 - 602
  • [22] ASYMPTOTIC SOLUTIONS OF A GENERALIZED EIGENVALUE PROBLEM
    SHAMMA, SE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (01): : 131 - 134
  • [23] ONE GENERALIZED QUASILINEAR EIGENVALUE PROBLEM
    MAKHMUDOV, AP
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (01): : 33 - 36
  • [24] A new algorithm for the generalized eigenvalue problem
    Huper, K
    Helmke, U
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 35 - 38
  • [25] A Note on Sparse Generalized Eigenvalue Problem
    Cai, Yunfeng
    Fang, Guanhua
    Li, Ping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] REDUCTION OF GENERALIZED RPA EIGENVALUE PROBLEM
    ULLAH, N
    GUPTA, KK
    JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (08) : 1163 - &
  • [27] On a generalized eigenvalue problem for nonsquare pencils
    Chu, Delin
    Golub, Gene H.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (03) : 770 - 787
  • [28] ASYMPTOTIC SOLUTIONS OF A GENERALIZED EIGENVALUE PROBLEM
    SHAMMA, SE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 418 - &
  • [29] Quantum algorithms for the generalized eigenvalue problem
    Liang, Jin-Min
    Shen, Shu-Qian
    Li, Ming
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2022, 21 (01)
  • [30] Count of eigenvalues in the generalized eigenvalue problem
    Chugunova, Marina
    Pelinovsky, Dmitry
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)