Numerical solution of a quadratic eigenvalue problem

被引:26
|
作者
Guo, CH [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quadratic eigenvalue problem; quadratic matrix equation; solvent; cyclic reduction;
D O I
10.1016/j.laa.2003.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quadratic eigenvalue problem (QEP) (lambda(2)M + lambdaG + K)x = 0, where M = M-T is positive definite, K = K-T is negative definite, and G = -G(T). The eigenvalues of the QEP occur in quadruplets (lambda, (λ) over bar, -lambda, (-λ) over bar) or in real or purely imaginary pairs (lambda, -lambda). We show that all eigenvalues of the QEP can be found efficiently and with the correct symmetry, by finding a proper solvent X of the matrix equation MX2 + GX + K = 0, as long as the QEP has no eigenvalues on the imaginary axis. This solvent approach works well also for some cases where the QEP has eigenvalues on the imaginary axis. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 50 条
  • [1] On the numerical solution of the quadratic eigenvalue complementarity problem
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (03) : 721 - 747
  • [2] On the numerical solution of the quadratic eigenvalue complementarity problem
    Alfredo N. Iusem
    Joaquim J. Júdice
    Valentina Sessa
    Hanif D. Sherali
    [J]. Numerical Algorithms, 2016, 72 : 721 - 747
  • [3] SOLUTION OF A COMPLEX QUADRATIC EIGENVALUE PROBLEM
    GIGNAC, DA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) : 99 - 106
  • [4] THE QUADRATIC ARNOLDI METHOD FOR THE SOLUTION OF THE QUADRATIC EIGENVALUE PROBLEM
    Meerbergen, Karl
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1463 - 1482
  • [5] A solution of the affine quadratic inverse eigenvalue problem
    Datta, Biswa Nath
    Sokolov, Vadim
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (07) : 1745 - 1760
  • [6] On the Numerical Solution of a Transmission Eigenvalue Problem
    Gegovska-Zajkova, S.
    Jovanovic, Bosko S.
    Jovanovic, Irena M.
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 289 - +
  • [7] NUMERICAL SOLUTION OF A NONLINEAR EIGENVALUE PROBLEM
    BOUWKAMP, CJ
    [J]. KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1965, 68 (04): : 539 - &
  • [8] Numerical methods for the tridiagonal hyperbolic quadratic eigenvalue problem
    Plestenjak, Bor
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (04) : 1157 - 1172
  • [9] A NUMERICAL STUDY OF THE SOLUTION OF THE PARTIAL EIGENVALUE PROBLEM
    PAPADRAKAKIS, M
    [J]. JOURNAL OF SOUND AND VIBRATION, 1980, 73 (03) : 353 - 362
  • [10] NUMERICAL SOLUTION OF INVERSE ALGEBRAIC EIGENVALUE PROBLEM
    BOHTE, Z
    [J]. COMPUTER JOURNAL, 1968, 10 (04): : 385 - &