THE QUADRATIC ARNOLDI METHOD FOR THE SOLUTION OF THE QUADRATIC EIGENVALUE PROBLEM

被引:33
|
作者
Meerbergen, Karl [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Leuven, Belgium
关键词
quadratic eigenvalue problem; Arnoldi method; SOAR method; Schur decomposition;
D O I
10.1137/07069273X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The quadratic Arnoldi algorithm is a Krylov method for the solution of the quadratic eigenvalue problem, that exploits the structure of the Krylov vectors. This allows us to reduce the memory requirements by about a half. The method is an alternative to the second order Arnoldi (SOAR) method. In the SOAR method it is not clear how to perform an implicit restart. We discuss various choices of linearizations in L-1 and DL. We also explain how to compute a partial Schur form of the underlying linearization with respect to the structure of the Schur vectors. We also formulate some open problems.
引用
收藏
页码:1463 / 1482
页数:20
相关论文
共 50 条
  • [1] SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem
    Bai, ZJ
    Su, YF
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) : 640 - 659
  • [2] A variant of second-order Arnoldi method for solving the quadratic eigenvalue problem
    Zhou, Peng
    Wang, Xiang
    He, Ming
    Mao, Liang-Zhi
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (04) : 718 - 733
  • [3] SOLUTION OF A COMPLEX QUADRATIC EIGENVALUE PROBLEM
    GIGNAC, DA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) : 99 - 106
  • [4] Numerical solution of a quadratic eigenvalue problem
    Guo, CH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 : 391 - 406
  • [5] On the numerical solution of the quadratic eigenvalue complementarity problem
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (03) : 721 - 747
  • [6] A solution of the affine quadratic inverse eigenvalue problem
    Datta, Biswa Nath
    Sokolov, Vadim
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (07) : 1745 - 1760
  • [7] On the numerical solution of the quadratic eigenvalue complementarity problem
    Alfredo N. Iusem
    Joaquim J. Júdice
    Valentina Sessa
    Hanif D. Sherali
    [J]. Numerical Algorithms, 2016, 72 : 721 - 747
  • [8] A semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems
    Huang, Wei-Qiang
    Li, Tiexiang
    Li, Yung-Ta
    Lin, Wen-Wei
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 259 - 280
  • [9] QUADRATIC EIGENVALUE PROBLEM
    HUGHES, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (02) : 319 - 326
  • [10] The Quadratic Eigenvalue Problem
    Veselic, K.
    [J]. DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 121 - 127