Exploring the geometry of the bifurcation sets in parameter space

被引:0
|
作者
Barrio, Roberto [1 ,2 ]
Ibanez, Santiago [3 ]
Perez, Lucia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50009, Spain
[2] Univ Zaragoza, IUMA, Computat Dynam Grp, Zaragoza 50009, Spain
[3] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
FITZHUGH-NAGUMO EQUATION; HOMOCLINIC ORBITS; MODEL; HOPF;
D O I
10.1038/s41598-024-61574-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By studying a nonlinear model by inspecting a p-dimensional parameter space through ( p - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document} -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [41] Direct Photons from a Hybrid Approach - Exploring the parameter space
    Baeuchle, B.
    Bleicher, M.
    HOT QUARKS 2010: WORKSHOP FOR YOUNG SCIENTISTS ON THE PHYSICS OF ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, 2011, 270
  • [42] Chaos in Solitary VCSELs: Exploring the Parameter Space With Advanced Sampling
    Virte, Martin
    Ferranti, Francesco
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (09) : 1601 - 1607
  • [43] Exploring the virtual reed parameter space using haptic feedback
    Smyth, Tamara
    Smyth, Thomas N.
    Kirkpatrick, Arthur E.
    2006 IEEE WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2006, : 45 - +
  • [44] Self-similar attractor sets of the Lorenz model in parameter space
    Chen, Zeling
    Zhao, Hong
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [45] Detecting Unstable Sets in an Estimated Parameter Space for the H′enon Map
    Itoh, Yoshitaka
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (03) : 579 - 589
  • [46] Rendering of Unfalsified PID Gain Sets for Parameter Space Control Design
    Saeki, Masami
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [47] A parameter space method for analyzing Hopf bifurcation of fractional-order nonlinear systems with multiple-parameter
    Yang, Jing
    Hou, Xiaorong
    Li, Xiaoxue
    Luo, Min
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [48] Geometry and topology of parameter space: investigating measures of robustness in regulatory networks
    Chaves, Madalena
    Sengupta, Anirvan
    Sontag, Eduardo D.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 59 (03) : 315 - 358
  • [49] Geometry of the stability domain in the parameter space:: D-decomposition technique
    Gryazina, E. N.
    Polyak, B. T.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 6510 - 6515
  • [50] ON THE GEOMETRY OF THE PARAMETER SPACE REDUCTION WITH APPLICATION TO GRAVITATIONAL WAVE DATA ANALYSIS
    Budzynski, Robert J.
    Kondracki, Witold
    Krolak, Andrzej
    ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 34 (01) : 49 - 63