Exploring the geometry of the bifurcation sets in parameter space

被引:0
|
作者
Barrio, Roberto [1 ,2 ]
Ibanez, Santiago [3 ]
Perez, Lucia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50009, Spain
[2] Univ Zaragoza, IUMA, Computat Dynam Grp, Zaragoza 50009, Spain
[3] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
FITZHUGH-NAGUMO EQUATION; HOMOCLINIC ORBITS; MODEL; HOPF;
D O I
10.1038/s41598-024-61574-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By studying a nonlinear model by inspecting a p-dimensional parameter space through ( p - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document} -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Interpolation of final geometry and result fields in process parameter space
    Misiun, Grzegorz
    Wang, Chao
    Geijselaers, Hubert
    van den Boogaard, Ton
    NUMIFORM 2016: THE 12TH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN INDUSTRIAL FORMING PROCESSES, 2016, 80
  • [32] Running WILD: the case for exploring mixed parameter sets in sensitivity analysis
    Sharma, Prashant P.
    Vahtera, Varpu
    Kawauchi, Gisele Y.
    Giribet, Gonzalo
    CLADISTICS, 2011, 27 (05) : 538 - 549
  • [33] N-bein formalism for the parameter space of quantum geometry
    Romero, Jorge
    Velasquez, Carlos A.
    Vergara, J. David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (37)
  • [34] Geometry on the parameter space of the belief propagation algorithm on Bayesian networks
    Watanabe, Y
    PHYSICS LETTERS A, 2006, 350 (1-2) : 81 - 86
  • [35] THE BIFURCATION OF STEADY GRAVITY WATER-WAVES IN (R,S) PARAMETER SPACE
    DOOLE, SH
    NORBURY, J
    JOURNAL OF FLUID MECHANICS, 1995, 302 : 287 - 305
  • [36] Bifurcation diagrams in estimated parameter space using a pruned extreme learning machine
    Itoh, Yoshitaka
    Adachi, Masaharu
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [37] Smouldering combustion as a treatment technology for faeces: Exploring the parameter space
    Yerman, L.
    Hadden, Rory M.
    Carrascal, J.
    Fabris, Ivo
    Cormier, Daniel
    Torero, Jose L.
    Gerhard, Jason I.
    Krajcovic, Michal
    Pironi, Paolo
    Cheng, Yu-Ling
    FUEL, 2015, 147 : 108 - 116
  • [38] EXPLORING THE BEAM PARAMETER SPACE OF A CW RFQ PROTON ACCELERATOR
    MCMICHAEL, GE
    ARBIQUE, GM
    BROWN, JC
    CHIDLEY, BG
    HUTCHEON, RM
    DEJONG, MS
    SHEIKH, JY
    PROCEEDINGS OF THE 1989 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: ACCELERATOR SCIENCE AND TECHNOLOGY, 1989, : 980 - 982
  • [39] Exploring the parameter space of human activity recognition with mobile devices
    Saylam, Berrenur
    Shoaib, Muhammad
    Durmaz Incel, Ozlem
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (06) : 3094 - 3110
  • [40] Exploring the parameter space of the modified rhyme test to improve efficiency
    Ellis, Gregory M.
    Brungart, Douglas S.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):