A parameter space method for analyzing Hopf bifurcation of fractional-order nonlinear systems with multiple-parameter

被引:9
|
作者
Yang, Jing [1 ]
Hou, Xiaorong [1 ]
Li, Xiaoxue [1 ]
Luo, Min [2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Southwest Petr Univ, Chengdu 610500, Peoples R China
关键词
Hopf bifurcation; Multiple-parameter; Fractional-order systems; Nonlinear system; Parameter space method; STABILITY; NETWORK;
D O I
10.1016/j.chaos.2021.111714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hopf bifurcation analysis of fractional-order nonlinear systems with multiple-parameter is discussed in this paper. The regions and boundaries corresponding to Hopf bifurcation conditions are described in parameter space. Based on cylindrical algebraic decomposition, the parameter space is decomposed into finite number of connected regions by some boundaries. Then parameter space method is proposed to determine stable parameter region and Hopf bifurcation parameter hypersurface. One example illustrates the effectiveness of the method.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [2] The multiple-parameter fractional Fourier transform
    Lang Jun
    Tao Ran
    Ran Qiwen
    Wang Yue
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (08): : 1010 - 1024
  • [3] The multiple-parameter fractional Fourier transform
    Jun Lang
    Ran Tao
    QiWen Ran
    Yue Wang
    Science in China Series F: Information Sciences, 2008, 51
  • [4] An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty
    Behinfaraz, Reza
    Badamchizadeh, Mohammadali
    Ghiasi, Amir Rikhtegar
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4468 - 4479
  • [5] The multiple-parameter fractional Fourier transform
    LANG Jun1
    2 Department of Mathematics
    Science in China(Series F:Information Sciences), 2008, (08) : 1010 - 1024
  • [6] Stability analysis of conformable fractional-order nonlinear systems depending on a parameter
    Naifar, O.
    Rebiai, G.
    Ben Makhlouf, A.
    Hammami, M. A.
    Guezane-Lakoud, A.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (02) : 287 - 296
  • [7] A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm
    Ren, Gong
    Yang, Renhuan
    Yang, Renyu
    Zhang, Pei
    Yang, Xiuzeng
    Xu, Chuangbiao
    Hu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Cai, Yanning
    MODERN PHYSICS LETTERS B, 2019, 33 (07):
  • [8] The multiple-parameter discrete fractional Hadamard transform
    Tao, Ran
    Lang, Jun
    Wang, Yue
    OPTICS COMMUNICATIONS, 2009, 282 (08) : 1531 - 1535
  • [9] The multiple-parameter discrete fractional Fourier transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) : 329 - 332