An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty

被引:35
|
作者
Behinfaraz, Reza [1 ]
Badamchizadeh, Mohammadali [1 ]
Ghiasi, Amir Rikhtegar [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
关键词
System identification; Fractional-order chaotic system; Recursive least square; Synchronization; PARTICLE SWARM OPTIMIZATION; ACTIVE CONTROL; ATTRACTOR; EQUATIONS;
D O I
10.1016/j.apm.2015.11.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, parameters of a fractional-order chaotic system are identified via a robust recursive error prediction method in presence of uncertainty. A generalized ARX structure has obtained by discretization of a continuous fractional-order differential equation defines the identification model. After identifying parameters of system, we use concept of active control method to synchronize two identified fractional-order chaotic systems. The validity of results are demonstrated through an example and also compared with other method. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4468 / 4479
页数:12
相关论文
共 50 条
  • [1] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [2] Chaotic Synchronization and Parameter Identification of Fractional-order Unified Systems
    Wang Shaoying
    Li Qiongyao
    Dong Jun
    Wu Aiguo
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2454 - 2459
  • [3] Adaptive lag synchronization and parameter identification of fractional order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    [J]. CHINESE PHYSICS B, 2011, 20 (09)
  • [4] Adaptive lag synchronization and parameter identification of fractional order chaotic systems
    张若洵
    杨世平
    [J]. Chinese Physics B, 2011, 20 (09) : 140 - 143
  • [5] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [6] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    [J]. ENTROPY, 2019, 21 (01):
  • [7] Chaotic Synchronization and Parameter Identification of Fractional-order Dynamical Equation with Attitude of Spacecraft
    Du Xiaowei
    Wu Aiguo
    Dong Jun
    Yu Kejie
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1456 - 1461
  • [8] Adaptive hybrid projective synchronization between different fractional-order chaotic systems with parameter uncertainty and unknown bounded external disturbances
    Xi, Quan
    Ma, Tiedong
    Guo, Dong
    Cui, Bing
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 811 - 816
  • [9] Chaos detection and parameter identification in fractional-order chaotic systems with delay
    Liguo Yuan
    Qigui Yang
    Caibin Zeng
    [J]. Nonlinear Dynamics, 2013, 73 : 439 - 448
  • [10] Chaos detection and parameter identification in fractional-order chaotic systems with delay
    Yuan, Liguo
    Yang, Qigui
    Zeng, Caibin
    [J]. NONLINEAR DYNAMICS, 2013, 73 (1-2) : 439 - 448