An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty

被引:35
|
作者
Behinfaraz, Reza [1 ]
Badamchizadeh, Mohammadali [1 ]
Ghiasi, Amir Rikhtegar [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
关键词
System identification; Fractional-order chaotic system; Recursive least square; Synchronization; PARTICLE SWARM OPTIMIZATION; ACTIVE CONTROL; ATTRACTOR; EQUATIONS;
D O I
10.1016/j.apm.2015.11.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, parameters of a fractional-order chaotic system are identified via a robust recursive error prediction method in presence of uncertainty. A generalized ARX structure has obtained by discretization of a continuous fractional-order differential equation defines the identification model. After identifying parameters of system, we use concept of active control method to synchronize two identified fractional-order chaotic systems. The validity of results are demonstrated through an example and also compared with other method. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4468 / 4479
页数:12
相关论文
共 50 条
  • [21] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    Bouzeriba, A.
    Boulkroune, A.
    Bouden, T.
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (05) : 893 - 908
  • [22] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    A. Bouzeriba
    A. Boulkroune
    T. Bouden
    [J]. International Journal of Machine Learning and Cybernetics, 2016, 7 : 893 - 908
  • [23] Synchronization of fractional-order chaotic systems
    Gao, X
    Yu, JB
    [J]. 2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 1169 - 1172
  • [24] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    [J]. CHINESE PHYSICS B, 2010, 19 (09)
  • [25] ADAPTIVE SYNCHRONIZATION OF A FRACTIONAL-ORDER COMPLEX T SYSTEM WITH A RANDOM PARAMETER
    Liu, Xiaojun
    Hong, Ling
    [J]. INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 6, 2016,
  • [26] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    [J]. Chinese Physics B, 2010, 19 (09) : 237 - 242
  • [27] Synchronization of fractional-order chaotic systems with model uncertainty and external disturbance
    Zhang, Yaru
    Wu, Cong
    Dong, Zhen
    Zhong, Laijun
    Guo, Rongwei
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2074 - 2078
  • [28] Synchronization of Fractional-Order Chaotic Systems with Model Uncertainty and External Disturbance
    Guo, Rongwei
    Zhang, Yaru
    Jiang, Cuimei
    [J]. MATHEMATICS, 2021, 9 (08)
  • [29] The adaptive synchronization of fractional-order chaotic system with fractional-order 1 < q < 2 via linear parameter update law
    Zhou, Ping
    Bai, Rongji
    [J]. NONLINEAR DYNAMICS, 2015, 80 (1-2) : 753 - 765
  • [30] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018