A parameter space method for analyzing Hopf bifurcation of fractional-order nonlinear systems with multiple-parameter

被引:9
|
作者
Yang, Jing [1 ]
Hou, Xiaorong [1 ]
Li, Xiaoxue [1 ]
Luo, Min [2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Southwest Petr Univ, Chengdu 610500, Peoples R China
关键词
Hopf bifurcation; Multiple-parameter; Fractional-order systems; Nonlinear system; Parameter space method; STABILITY; NETWORK;
D O I
10.1016/j.chaos.2021.111714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hopf bifurcation analysis of fractional-order nonlinear systems with multiple-parameter is discussed in this paper. The regions and boundaries corresponding to Hopf bifurcation conditions are described in parameter space. Based on cylindrical algebraic decomposition, the parameter space is decomposed into finite number of connected regions by some boundaries. Then parameter space method is proposed to determine stable parameter region and Hopf bifurcation parameter hypersurface. One example illustrates the effectiveness of the method.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] The discrete multiple-parameter fractional Fourier transform
    Lang Jun
    Tao Ran
    Wang Yue
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (11) : 2287 - 2299
  • [12] Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach
    Zhong-Rong Lu
    Guang Liu
    Jike Liu
    Yan-Mao Chen
    Li Wang
    Nonlinear Dynamics, 2019, 95 : 1495 - 1512
  • [13] The discrete multiple-parameter fractional Fourier transform
    Jun Lang
    Ran Tao
    Yue Wang
    Science China Information Sciences, 2010, 53 : 2287 - 2299
  • [14] Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach
    Lu, Zhong-Rong
    Liu, Guang
    Liu, Jike
    Chen, Yan-Mao
    Wang, Li
    NONLINEAR DYNAMICS, 2019, 95 (02) : 1495 - 1512
  • [15] An Efficient Method for Hopf Bifurcation Control in Fractional-Order Neuron Model
    Chen, Shaolong
    Zou, Yuan
    Zhang, Xudong
    IEEE ACCESS, 2019, 7 : 77490 - 77498
  • [16] ON THE OSCILLATORY INSTABILITY OF MULTIPLE-PARAMETER SYSTEMS
    ATADAN, AS
    HUSEYIN, K
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1985, 23 (08) : 857 - 873
  • [17] Parameter estimation method for separable fractional-order Hammerstein nonlinear systems based on the on-line measurements
    Wang, Junwei
    Xiong, Weili
    Ding, Feng
    Zhou, Yihong
    Yang, Erfu
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 488
  • [18] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [19] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    ENTROPY, 2019, 21 (01):
  • [20] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Oliva-Gonzalez, Lorenz Josue
    Martinez-Guerra, Rafael
    NONLINEAR DYNAMICS, 2024, 112 (08) : 6379 - 6402