Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach

被引:0
|
作者
Zhong-Rong Lu
Guang Liu
Jike Liu
Yan-Mao Chen
Li Wang
机构
[1] Sun Yat-sen University,Department of Applied Mechanics and Engineering, School of Aeronautics and Astronautics
来源
Nonlinear Dynamics | 2019年 / 95卷
关键词
Nonlinear fractional-order system; Parameter identification; Sensitivity analysis; Trust-region constraint; Optimal weight;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional-order derivative is a powerful and promising concept to describe many physical phenomena due to its heredity/memory feature. This paper aims to establish a general methodology for parameter identification of nonlinear fractional-order systems based on the time domain response data and the sensitivity analysis. The development of the enhanced response sensitivity approach is mainly threefold. Firstly, a computational scheme based on the Adams-type discretization and the Newmark-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} method is presented to get the numerical solution of the nonlinear fractional-order systems. Thereafter, a hybrid strategy is developed to proceed the sensitivity analysis where the sensitivity to the fractional-order parameters is obtained through finite different calculation, while the sensitivity to other parameters is analyzed via direct differentiation. Secondly, the trust-region constraint is incorporated into the response sensitivity approach, and as a result, a weak convergence is reached. Thirdly, the optimal choice of the weight matrix within the framework of the response sensitivity approach is derived by minimizing the identification error, and eventually, the reciprocal of the measurement error covariance is found to be the optimal weight matrix. Numerical examples are conducted to testify the feasibility and efficiency of the present approach for parameter identification of nonlinear fractional-order systems and to verify the improvement in the identification accuracy brought up by the optimal weight matrix.
引用
收藏
页码:1495 / 1512
页数:17
相关论文
共 50 条
  • [1] Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach
    Lu, Zhong-Rong
    Liu, Guang
    Liu, Jike
    Chen, Yan-Mao
    Wang, Li
    [J]. NONLINEAR DYNAMICS, 2019, 95 (02) : 1495 - 1512
  • [2] Parameter Identification of Fractional-Order System via Enhanced Response Sensitivity Approach
    Liu, Guang
    Liu, Jike
    Lü, Zhongrong
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (04): : 65 - 72
  • [3] Parameter identification of fractional order system using enhanced response sensitivity approach
    Liu, G.
    Wang, L.
    Luo, W. L.
    Liu, J. K.
    Lu, Z. R.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 492 - 505
  • [4] Parametric identification of fractional-order nonlinear systems
    Mani, Ajith Kuriakose
    Narayanan, M. D.
    Sen, Mihir
    [J]. NONLINEAR DYNAMICS, 2018, 93 (02) : 945 - 960
  • [5] Parametric identification of fractional-order nonlinear systems
    Ajith Kuriakose Mani
    M. D. Narayanan
    Mihir Sen
    [J]. Nonlinear Dynamics, 2018, 93 : 945 - 960
  • [6] A Quasilinearization Approach for Identification Control Vectors in Fractional-Order Nonlinear Systems
    Koleva, Miglena N.
    Vulkov, Lubin G.
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (04)
  • [7] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [8] Iterative parameter and order identification for fractional-order nonlinear finite impulse response systems using the key term separation
    Wang, Junwei
    Ji, Yan
    Zhang, Chen
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (08) : 1562 - 1577
  • [9] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [10] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    [J]. ENTROPY, 2019, 21 (01):