Error estimates for the approximation of multibang control problems

被引:0
|
作者
Christian Clason
Thi Bich Tram Do
Frank Pörner
机构
[1] University Duisburg-Essen,Faculty of Mathematics
[2] University of Würzburg,Department of Mathematics
关键词
Multibang control; Moreau-Yosida approximation; Finite element discretization; Error estimates; Semi-smooth Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
This work is concerned with optimal control problems where the objective functional consists of a tracking-type functional and an additional “multibang” regularization functional that promotes optimal control taking values from a given discrete set pointwise almost everywhere. Under a regularity condition on the set where these discrete values are attained, error estimates for the Moreau–Yosida approximation (which allows its solution by a semismooth Newton method) and the discretization of the problem are derived. Numerical results support the theoretical findings.
引用
收藏
页码:857 / 878
页数:21
相关论文
共 50 条
  • [11] Error estimates for the finite element approximation of bilinear boundary control problems
    Max Winkler
    Computational Optimization and Applications, 2020, 76 : 155 - 199
  • [12] Error estimates for spectral approximation of elliptic control problems with integral state and control constraints
    Huang, Fenglin
    Chen, Yanping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (08) : 789 - 803
  • [13] ERROR ESTIMATES FOR APPROXIMATION OF SOME UNILATERAL PROBLEMS
    SCARPINI, F
    VIVALDI, MA
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1977, 11 (02): : 197 - 208
  • [14] Robust error estimates for the finite element approximation of elliptic optimal control problems
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1370 - 1381
  • [15] ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION
    Song, Xiaoliang
    Chen, Bo
    Yu, Bo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 471 - 492
  • [16] ERROR ESTIMATES OF SEMIDISCRETE FINITE ELEMENT APPROXIMATION FOR MINIMAL TIME IMPULSE CONTROL PROBLEMS
    Huang, Jingfang
    Yu, Xin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (10): : 4345 - 4360
  • [17] SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 697 - 711
  • [18] Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints
    Casas, Eduardo
    Kunisch, Karl
    Mateos, Mariano
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1485 - 1518
  • [19] State Error Estimates for the Numerical Approximation of Sparse Distributed Control Problems in the Absence of Tikhonov Regularization
    Eduardo Casas
    Mariano Mateos
    Vietnam Journal of Mathematics, 2021, 49 : 713 - 738
  • [20] State Error Estimates for the Numerical Approximation of Sparse Distributed Control Problems in the Absence of Tikhonov Regularization
    Casas, Eduardo
    Mateos, Mariano
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (03) : 713 - 738