Error estimates for the approximation of multibang control problems

被引:0
|
作者
Christian Clason
Thi Bich Tram Do
Frank Pörner
机构
[1] University Duisburg-Essen,Faculty of Mathematics
[2] University of Würzburg,Department of Mathematics
关键词
Multibang control; Moreau-Yosida approximation; Finite element discretization; Error estimates; Semi-smooth Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
This work is concerned with optimal control problems where the objective functional consists of a tracking-type functional and an additional “multibang” regularization functional that promotes optimal control taking values from a given discrete set pointwise almost everywhere. Under a regularity condition on the set where these discrete values are attained, error estimates for the Moreau–Yosida approximation (which allows its solution by a semismooth Newton method) and the discretization of the problem are derived. Numerical results support the theoretical findings.
引用
收藏
页码:857 / 878
页数:21
相关论文
共 50 条
  • [41] Error Estimates for a Class of Elliptic Optimal Control Problems
    Mali, O.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) : 58 - 79
  • [42] A posteriori error estimates for the fractional optimal control problems
    Xingyang Ye
    Chuanju Xu
    Journal of Inequalities and Applications, 2015
  • [43] A posteriori error estimates for convex boundary control problems
    Liu, WB
    Yan, NN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 73 - 99
  • [44] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [45] A posteriori error estimates for the fractional optimal control problems
    Ye, Xingyang
    Xu, Chuanju
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [46] A Posteriori Error Estimates for Semilinear Boundary Control Problems
    Chen, Yanping
    Lu, Zuliang
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 455 - +
  • [47] On the dipole approximation with error estimates
    Bossmann, Lea
    Grummt, Robert
    Kolb, Martin
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (01) : 185 - 193
  • [48] Error estimates in Pade approximation
    Brezinski, C
    ERROR CONTROL AND ADAPTIVITY IN SCIENTIFIC COMPUTING, 1999, 536 : 75 - 85
  • [49] On the dipole approximation with error estimates
    Lea Boßmann
    Robert Grummt
    Martin Kolb
    Letters in Mathematical Physics, 2018, 108 : 185 - 193
  • [50] A posteriori error estimates for continuous interior penalty Galerkin approximation of transient convection diffusion optimal control problems
    Zhou, Zhaojie
    Fu, Hongfei
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 19