Error estimates for the approximation of multibang control problems

被引:0
|
作者
Christian Clason
Thi Bich Tram Do
Frank Pörner
机构
[1] University Duisburg-Essen,Faculty of Mathematics
[2] University of Würzburg,Department of Mathematics
关键词
Multibang control; Moreau-Yosida approximation; Finite element discretization; Error estimates; Semi-smooth Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
This work is concerned with optimal control problems where the objective functional consists of a tracking-type functional and an additional “multibang” regularization functional that promotes optimal control taking values from a given discrete set pointwise almost everywhere. Under a regularity condition on the set where these discrete values are attained, error estimates for the Moreau–Yosida approximation (which allows its solution by a semismooth Newton method) and the discretization of the problem are derived. Numerical results support the theoretical findings.
引用
收藏
页码:857 / 878
页数:21
相关论文
共 50 条
  • [31] A Posteriori Error Estimates for hp Spectral Element Approximation of Elliptic Control Problems with Integral Control and State Constraints
    Zhang, Jinling
    Chen, Yanping
    Null, Yunqing Huang
    Huang, Fenglin
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (02) : 469 - 493
  • [32] Necessary optimality conditions for two dimensional fractional optimal control problems and error estimates for the numerical approximation
    Kumar, Nitin
    Mehra, Mani
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (12):
  • [33] Correction to: State Error Estimates for the Numerical Approximation of Sparse Distributed Control Problems in the Absence of Tikhonov Regularization
    Eduardo Casas
    Mariano Mateos
    Vietnam Journal of Mathematics, 2023, 51 : 565 - 566
  • [34] Error estimates for parabolic optimal control problems with control constraints
    Rösch, A
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (02): : 353 - 376
  • [35] A posteriori error estimates for non-conforming approximation of eigenvalue problems
    Dari, E. A.
    Duran, R. G.
    Padra, C.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (05) : 580 - 591
  • [36] PRIORI ERROR ESTIMATES FOR APPROXIMATION OF PARABOLIC BOUNDARY-VALUE PROBLEMS
    SHOWALTER, RE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) : 456 - 463
  • [37] A POSTERIORI ERROR ESTIMATES FOR A DISCONTINUOUS GALERKIN APPROXIMATION OF STEKLOV EIGENVALUE PROBLEMS
    Zeng, Yuping
    Wang, Feng
    APPLICATIONS OF MATHEMATICS, 2017, 62 (03) : 243 - 267
  • [38] A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
    Yuping Zeng
    Feng Wang
    Applications of Mathematics, 2017, 62 : 243 - 267
  • [39] Error estimates for the numerical approximation of a semilinear elliptic control problem
    Arada, N
    Casas, E
    Tröltzsch, F
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) : 201 - 229
  • [40] Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem
    Nadir Arada
    Eduardo Casas
    Fredi Tröltzsch
    Computational Optimization and Applications, 2002, 23 : 201 - 229