Intrinsic Ultracontractivity for Schrödinger Operators Based on Fractional Laplacians

被引:0
|
作者
Kamil Kaleta
Tadeusz Kulczycki
机构
[1] Wrocław University of Technology,Institute of Mathematics and Computer Science
[2] Polish Academy of Sciences,Institute of Mathematics
来源
Potential Analysis | 2010年 / 33卷
关键词
Schrödinger operator; Fractional Laplacian; Intrinsic ultracontractivity; First eigenfunction; Primary 47D08; 60G52; Secondary 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Feynman-Kac semigroup generated by the Schrödinger operator based on the fractional Laplacian − ( − Δ)α/2 − q in Rd, for q ≥ 0, α ∈ (0,2). We obtain sharp estimates of the first eigenfunction φ1 of the Schrödinger operator and conditions equivalent to intrinsic ultracontractivity of the Feynman-Kac semigroup. For potentials q such that lim|x| → ∞ q(x) = ∞ and comparable on unit balls we obtain that φ1(x) is comparable to (|x| + 1) − d − α (q(x) + 1) − 1 and intrinsic ultracontractivity holds iff lim|x| → ∞ q(x)/log|x| = ∞. Proofs are based on uniform estimates of q-harmonic functions.
引用
收藏
页码:313 / 339
页数:26
相关论文
共 50 条
  • [31] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [32] Resonance Theory for Schrödinger Operators
    O. Costin
    A. Soffer
    Communications in Mathematical Physics, 2001, 224 : 133 - 152
  • [33] Spectral identities for Schrödinger operators
    Guliyev, Namig J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [34] Kernel estimates for Schrödinger operators
    G. Metafune
    D. Pallara
    A. Rhandi
    Journal of Evolution Equations, 2006, 6 : 433 - 457
  • [35] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    Mathematische Annalen, 1998, 312 : 659 - 716
  • [36] On Learning Rates and Schrödinger Operators
    Shi, Bin
    Su, Weijie J.
    Jordan, Michael I.
    Journal of Machine Learning Research, 2023, 24
  • [37] Schrödinger operators periodic in octants
    Evgeny Korotyaev
    Jacob Schach MØller
    Letters in Mathematical Physics, 2021, 111
  • [38] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [39] Intrinsic ultracontractivity for Schrodinger operators with mixed boundary conditions
    Mendez-Hernandez, Pedro J.
    Wong, Kittipat
    POTENTIAL ANALYSIS, 2006, 24 (04) : 333 - 355
  • [40] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854