Intrinsic Ultracontractivity for Schrödinger Operators Based on Fractional Laplacians

被引:0
|
作者
Kamil Kaleta
Tadeusz Kulczycki
机构
[1] Wrocław University of Technology,Institute of Mathematics and Computer Science
[2] Polish Academy of Sciences,Institute of Mathematics
来源
Potential Analysis | 2010年 / 33卷
关键词
Schrödinger operator; Fractional Laplacian; Intrinsic ultracontractivity; First eigenfunction; Primary 47D08; 60G52; Secondary 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Feynman-Kac semigroup generated by the Schrödinger operator based on the fractional Laplacian − ( − Δ)α/2 − q in Rd, for q ≥ 0, α ∈ (0,2). We obtain sharp estimates of the first eigenfunction φ1 of the Schrödinger operator and conditions equivalent to intrinsic ultracontractivity of the Feynman-Kac semigroup. For potentials q such that lim|x| → ∞ q(x) = ∞ and comparable on unit balls we obtain that φ1(x) is comparable to (|x| + 1) − d − α (q(x) + 1) − 1 and intrinsic ultracontractivity holds iff lim|x| → ∞ q(x)/log|x| = ∞. Proofs are based on uniform estimates of q-harmonic functions.
引用
收藏
页码:313 / 339
页数:26
相关论文
共 50 条
  • [21] BOUNDEDNESS OF DIFFERENTIAL TRANSFORMS FOR FRACTIONAL HEAT SEMIGROUPS GENERATED BY SCHRÖDINGER OPERATORS
    Li, Pengtao
    Liu, Yu
    Wang, Zhiyong
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [22] ENDPOINT ESTIMATES FOR FRACTIONAL INTEGRAL ASSOCIATED TO SCHRDINGER OPERATORS ON THE HEISENBERG GROUPS
    江寅生
    ActaMathematicaScientia, 2011, 31 (03) : 993 - 1000
  • [23] Heat Kernel Estimates of Fractional Schrödinger Operators with Negative Hardy Potential
    Tomasz Jakubowski
    Jian Wang
    Potential Analysis, 2020, 53 : 997 - 1024
  • [24] INTRINSIC ULTRACONTRACTIVITY AND EIGENFUNCTION ESTIMATES FOR SCHRODINGER-OPERATORS
    BANUELOS, R
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) : 181 - 206
  • [25] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [26] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [27] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [28] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [29] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [30] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    Annales Henri Poincaré, 2011, 12 : 397 - 418